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Abstract. Communicating Hierarchical Transaction-based Timed Automata have been introduced
to model systems performing long–running transactions. Here, for these automata a security concept
is introduced, which is based on a notion of opacity and on the assumption that an attacker can not
only observe public system activities, but also cause abortion of some of them. Different intruder
capabilities as well as different kinds of opacity are defined and the resulting security properties are
investigated. Security of long–running transactions is defined by the mentioned notion of opacity
and conditions for compositionality are established.

1. Introduction

Opacity is one of the strongest security concepts as, with its help, many other security properties can
be expressed (see [3]). Its origin can be traced to a concept of non-interference (see [7]), which as-
sumes the absence of any information flow between private and public system activities. More precisely,
systems are considered to be secure if from observations of their public activities no information about
private activities can be deduced. This approach has found many reformulations for different formalisms,
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computational models and nature or “quality” of observations. All reformulations try to capture impor-
tant aspects of system behaviour with respect to possible attacks against systems security, and often are
tailored to some types of attacks.

Timing attacks have a particular position among attacks against systems security. They represent a
powerful tool for “breaking” “unbreakable” systems, algorithms, protocols, etc. For example, by care-
fully measuring the amount of time required to perform private key operations, attackers may be able to
find fixed Diffie-Hellman exponents, factor RSA keys, and break other cryptosystems (see [10]). This
idea was developed in [5] where a timing attack against smart card implementation of RSA was con-
ducted. In [9], a timing attack on the RC5 block encryption algorithm, in [13] the one against the popular
SSH protocol and in [6] the one against web privacy are described.

To perform different kinds of timing attacks attackers might exploit different capabilities. For exam-
ple, for some attacks it is enough if an attacker can only observe the system to be attacked. For other
attacks an attacker has to communicate with the system via public actions, either directly or by means
of an embedded auxiliary system. Some attacks exploit the brute force of an attacker who can interrupt
some system activities (by resetting system components, breaking communication links, etc). Particu-
larly sensitive to such type of attacks are systems performing so called long–running transactions (LRTs).
A LRT is composed by atomic activities that should be executed completely. Atomicity means that they
are either successfully executed or no effect is observed if their execution fails. Partial executions of a
LRT are not desirable, and, if they occur, they must be compensated for. Therefore, all the activities Ai

in a LRT have a compensating activity Bi that can be invoked to recover from the effects of a successful
execution of Ai if some failure occurs later. Hence from the computational point of view the system
is robust with respect to abortion of some of its activities. However these abortions may lead to some
information flow between classified and public system activities.

In [11] we have introduced Communicating Hierarchical Transaction–based Timed Automata (CHT-
TAs) to model LRTs. In this paper we investigate information flow based attacks for systems described
with CHTTAs and attackers that can not only passively observe public system activities but also actively
cause abortion of system activities. We model information flow by the notion of opacity for which we
give different definition depending on the assumed capabilities of attackers. The introduced concepts
are used to investigate security of LRTs. We study under which conditions opacity of LRTs can be
established compositionally.

In Section 2 we recall CHTTAs. In Section 3 we study opacity of CHTTAs, reformulating it for
intruders who can also abort system activities. In Section 4 we discuss the application to LRTs. In
Section 5 we conclude.

2. Communicating Hierarchical Timed Automata

Let us assume a finite set of communication channels C partitioned into a set CPub of public channel and
a set C \ CPub of private channels. As usual, we denote with a! the action of sending a signal on channel
a and with a? the action of receiving a signal on a. Let ΣC denote the set of all possible sending and
receiving actions on channels in C ⊆ C.

Let us assume a finite set X of positive real variables called clocks. A valuation over X is a mapping
v : X → IR≥0 assigning real values to clocks. Let VX denote the set of all valuations over X . For a
valuation v and a time value t ∈ IR≥0, let v + t denote the valuation such that (v + t)(x) = v(x) + t, for
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each clock x ∈ X .
The set of constraints over X , denoted Φ(X), is defined by the following grammar, where φ ranges

over Φ(X), x ∈ X , c ∈ Q and ∼∈ {<,≤,=, 6=, >,≥}:

φ ::= x ∼ c |φ ∧ φ | ¬φ |φ ∨ φ | true

We write v |= φ when the valuation v satisfies the constraint φ. Formally, v |= x ∼ c iff v(x) ∼ c,
v |= φ1 ∧ φ2 iff v |= φ1 and v |= φ2, v |= ¬φ iff v 6|= φ, v |= φ1 ∨ φ2 iff v |= φ1 or v |= φ2, and
v |= true.

Let B ⊆ X; with v[B] we denote the valuation resulting after resetting all clocks in B. More
precisely, v[B](x) = 0 if x ∈ B, v[B](x) = v(x), otherwise. Finally, with 0 we denote the valuation
such that 0(x) = 0 for all x ∈ X .

Definition 2.1. A Transaction-based Timed Automaton (TTA) is a tuple A = (Σ, X, S,Q, q0, δ), where:

• Σ ⊆ ΣC is a finite set of labels;

• X is a finite set of clocks;

• S is a finite set of superstates;

• Q = L ∪ S ∪ {�,⊗}, where L is a finite set of basic states and � and ⊗ represent the special
states commit and abort, respectively;

• q0 ∈ L is the initial state;

• δ ⊆ (L× Σ ∪ {τ} × Φ(X)× 2X ×Q) ∪ (S × {�,�} ×Q) is the set of transitions.

A TTA is said to be flat when S = ∅.

Superstates are states that can be refined to automata (hierarchical composition). Note that from super-
states in S only transitions with labels in {�,�} can be taken. We assume that � and ⊗ are the final
states of a TTA.

We now introduce CHTTAs as an extension of TTAs allowing superstate refinement and parallelism.

Definition 2.2. Let ΣPub = {a!, a? | a ∈ CPub} and A = {A1, . . . , An} be a finite set of TTAs, with
Ai = (Σi, X i, Si, Qi, qi

0, δ
i) and such that there exists m (m < n) such that Aj is flat if and only if

j ≥ m. A Communicating Hierarchical Transaction-based Timed Automaton (CHTTAΣPub
A ) is given by:

CHTTAΣPub
A ::= 〈Ai, µ〉

∣∣ CHTTAΣPub
A ||CHTTAΣPub

A

where µ is a hierarchical composition function µ : Si → CHTTAΣPub

{Ai+1,...,An}.

Parallelism allows concurrent execution of automata. Hierarchical composition allows refining super-
states. Automata executed in parallel may communicate by synchronizing transitions labeled with a
sending and a receiving action on the same channel. The set ΣPub contains sending and receiving ac-
tions on public channels. These actions may belong to the alphabets of TTAs in A. Communications
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Figure 1. Example of CHTTA.

performed using non public channels are only allowed between components inside the same superstate
or at top–level. Communication performed by using public channels have no restrictions.

Note that, by definition of A and µ, cyclic nesting is avoided. In the following, if it does not give rise
to ambiguity, we may write CHTTA instead of CHTTAΣPub

A . Finally, if A is a flat TTA, in 〈A,µ〉 µ is an
empty function.

Example 2.1. In Figure 1 we show a simple example of CHTTA. Superstates of the CHTTA are de-
picted as boxes and basic states as circles; initial states are represented as vertical segments. Transitions
are represented as labeled arrows in which labels τ and constraints true are omitted. Containment
in boxes represents hierarchical composition, while parallel composition is represented by juxtaposi-
tions. The CHTTA in the figure is formally defined as 〈(∅, ∅, {s1}, {q0, s1,�,⊗}, q0, δ), µ〉, where
δ = {(q0, τ, true, ∅, s1), (s1,�,�), (s1,�,⊗)}, and µ(s1) = A1||A2. Automata A1 and A2 are de-
fined as A1 = 〈({a!, b?}, {x}, ∅, {q0, q1,�,⊗}, q0, δ1) and A2 = 〈({a?, b!}, ∅, ∅, {q0, q2,�,⊗}, q0, δ2),
respectively, with δ1 = {(q0, a!, true, {x}, q1), (q1, b?, x < 5, ∅,�), (q1, τ, x ≥ 5, ∅,⊗)} and δ2 =
{(q0, a?, true, ∅, q2), (q2, b!, true, ∅,�)}.

Configurations of CHTTAs are pairs tc = (c, ν) where c, the untimed configuration, represents the
currently active states, and ν, the composed valuation, represents the current clock valuations. The
configuration of a CHTTA without parallel components, when the currently active state is a basic state,
is a pair (q, v) with q the currently active state, and v the automaton clock valuation. We represent with
q.c the configuration where q is a superstate and c is the untimed configuration of µ(q), and with v.ν
the composed valuation where v is the clock valuation of the automaton having q as superstate and ν
is the composed valuation of the clocks of µ(q). We denote with c1; c2 the untimed configuration of
the parallel composition of two CHTTAs having c1 and c2 as untimed configurations. Analogously, we
denote with ν1; ν2 the composed valuation of the parallel composition of two CHTTAs having ν1 and
ν2 as composed valuations. Formally, the set of configurations Conf(A) of a CHTTA A is inductively
defined as follows:

• if A = 〈(Σ, X, S,Q, q0, δ), µ〉, then Conf(A) = {(Q \ S) × VX} ∪ {(q.c, v.ν) | q ∈ S ∧ v ∈
Vx ∧ (c, ν) ∈ Conf(µ(q))};

• if A = A1||A2 then Conf(A) = {(c1; c2, ν1; ν2) | (c1, ν1) ∈ Conf(A1)∧(c2, ν2) ∈ Conf(A2)}.

For a composed valuation ν and a time value t ∈ IR≥0, let ν + t denote the composed valuation such
that (v + t)(x) = v(x) + t, for each valuation v in ν.

The initial configuration of A, denoted Init(A) ∈ Conf(A), is the configuration (c, ν) such that
each state occurring in c is an initial state and each valuation occurring in ν is 0.

We give a semantics of CHTTAs as a labeled transition system where states are pairs (A, tc) with A ∈
CHTTAΣPub

A and tc ∈ Conf(A), and labels are in IR>0∪
⋃

i Σ
i∪{τ}. In order to simplify the semantics

we introduce a notion of structural equivalence for pairs (A, tc), accounting for commutativity and as-
sociativity of parallelism. The relation ≈ is the least equivalence relation satisfying (A1||A2, tc1; tc2) ≈
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(A2||A1, tc2; tc1) and (A1||(A2||A3), tc1; (tc2; tc3)) ≈ ((A1||A2)||A3, (tc1; tc2); tc3). Moreover, given
an untimed parallel configuration c = c1; . . . ; cn we use the following notations: c ≈ � if ∀i.ci = �,
and c ≈ ⊗ if ∃i.ci = ⊗ ∧ ∀i 6= j.cj ∈ {�,⊗}.

Definition 2.3. (Semantics of CHTTAs)
Given A ∈ CHTTAΣPub

A , the semantics of a A is the least labeled transition relation α−→ over {A} ×
Conf(A) closed with respect to structural equivalence and satisfying the following rules:

t ∈ IR>0

(A, (c, ν)) t−→ (A, (c, ν + t))
(T)

(q, α, φ, B, q′) ∈ δ v |= φ q′ 6∈ S

(〈A,µ〉, (q, v)) α−→ (〈A,µ〉, (q′, v[B]))
(C1)

(q, α, φ, B, q′) ∈ δ v |= φ q′ ∈ S Init(µ(q′)) = (c, ν)

(〈A,µ〉, (q, v)) α−→ (〈A,µ〉, (q′.c, v[B].ν))
(C2)

(µ(q), (c, ν)) α−→ (µ(q), (c′, ν ′)) α ∈ ΣPub ∪ {τ}
(〈A,µ〉, (q.c, v.ν)) α−→ (〈A,µ〉, (q.c′, v.ν ′))

(C3)

(A1, (c1, v)) α−→ (A1, (c′1, v
′)) α ∈ ΣPub ∪ {τ}

(A1||A2, (c1; c2, v)) α−→ (A1||A2, (c′1; c2, v′))
(P1)

(A1, (c1, v)) a!−→ (A1, (c′1, v
′)) (A2, (c2, v

′)) a?−→ (A2, (c′2, v
′′))

(A1||A2, (c1; c2, v)) τ−→ (A1||A2, (c′1; c
′
2, v

′′))
(P2)

c ≈ � (q, �, q′) ∈ δ q′ 6∈ S

(〈A,µ〉, (q.c, v.ν)) τ−→ (〈A,µ〉, (q′, v))
(Com1)

c ≈ � (q, �, q′) ∈ δ q′ ∈ S Init(µ(q′)) = (c′, ν ′)

(〈A,µ〉, (q.c, v.ν)) τ−→ (〈A,µ〉, (q′.c′, v.ν ′))
(Com2)

c ≈ ⊗ (q, �, q′) ∈ δ q′ 6∈ S

(〈A,µ〉, (q.c, v.ν)) τ−→ (〈A,µ〉, (q′, v))
(Ab1)

c ≈ ⊗ (q, �, q′) ∈ δ q′ ∈ S Init(µ(q′)) = (c′, ν ′)

(〈A,µ〉, (q.c, v.ν)) τ−→ (〈A,µ〉, (q′.c′, v.ν ′))
(Ab2)

where A = (Σ, X, S,Q, q0, δ) except for rule (T) where A is any CHTTA.

Rule (T) allows the elapsing of time for a generic CHTTA A. We note that the time t is the same for
any TTA composing A. Rules (C1) and (C2) describe the behavior of a flat TTA. From a configuration
(q, v), the step is performed due to a transition (q, α, φ, B, q′) such that the condition φ is satisfied
by v. After the step, the flat TTA is in the configuration composed by state q′ and where clocks in
B are reset. If q′ is a superstate (rule (C2) ), then the CHTTA µ(q′) becomes active inside q′. The
synchronization step is described by rule (P2). The relation ≈ allows CHTTAs that are not neighbors in
the parallel composition to communicate. Rules (C3) and (P1) allow expanding the step of a TTA which
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is a component of a CHTTA. Rule (C3) deals with the hierarchical composition and rule (P1) deals with
the parallel composition. The label of the step is either τ or a public channel. Hence, thanks to rule (P2),
communication between TTAs in parallel is allowed both for private and public channels, while for TTAs
in different superstates the communication is allowed only if the channel is public. Moreover, we note
that the step we are expanding cannot be a time step. Hence, since time steps can be performed only by
the root, the time elapsed is the same for each TTA composing the CHTTA we are considering.

Each execution of a superstate terminates with either a commit or an abort state. Rules (Com1) and
(Com2) deal with the case in which the commit of the superstate takes the TTA to a basic state or to a
superstate, respectively, and rules (Ab1) and (Ab2) deal with the case in which the abort of the superstate
takes the TTA to a basic state or to a superstate, respectively.

Given a string w = α1 . . . αm, we will write (A, (c, ν)) w=⇒ (A, (c′, ν ′)) to denote the existence of a
sequence of steps (A, (c, ν)) α1−→ . . .

αm−→ (A, (c′, ν ′)). We denote with Λ = IR>0 ∪ ΣPub ∪ {τ} the set
of labels of the transition system that does not include communcations on private channels. The set Λ is
the alphabet of the language accepted by a CHTTA.

Definition 2.4. (Accepted Language)
Let A be a CHTTA, L(A)� = {w ∈ Λ? | (A, Init(A)) w=⇒ (A, (�, ν ′))} and L(A)⊗ = {w ∈ Λ? |
(A, Init(A)) w=⇒ (A, (⊗, ν ′))}. The language accepted by A is L(A) = L(A)� ∪ L(A)⊗.

We denote with Lp(A) the set of all prefixes of elements in L(A), namely Lp(A) = {w | w.w′ ∈
L(A) for some w′}. Moreover, we denote with L(A, ΣV ) and Lp(A,ΣV )′ the subsets of L(A) and
Lp(A), respectively, whose elements are string composed only by symbols in IR>0 ∪ ΣV ∪ {τ}.

3. Information Flow in CHTTAs

In this section we will formalize a notion of attacks on system security that are based on an information
flow between invisible (private) and visible (public) system activities. We assume that an attacker is just
an eavesdropper who can see a part of the system behaviour and tries to deduce from this observation
some classified information. In the case of timing attacks, time of occurrences of observed events plays
a crucial role, namely, timing of actions represents a fundamental information.

To formalize the attacks we do not divide actions into public and private ones at the system de-
scription level, as it is done for example in [8, 4], but we use a more general concept of observation.
This concept was recently exploited in [2] and [3] in a framework of Petri Nets and transition systems,
respectively, where opacity is defined with the help of observations. First we reformulate a notion of
observation function.

Definition 3.1. (Observation)
Let Θ be as set of channels and ΛΘ = IR>0 ∪ ΣΘ be a set of elements called observables. Any function
obs : Λ? → Λ?

Θ is an observation function. It is called static/dynamic/orwellian/m-orwellian (m ≥ 1) if
the following conditions hold respectively (below we assume w = x1 . . . xn):

• static if there is a mapping obs′ : Λ → ΛΘ ∪ {ε} such that for every w ∈ Λ? it holds obs(w) =
obs′(x1) . . . obs′(xn),

• dynamic if there is a mapping obs′ : Λ? → ΛΘ ∪ {ε} such that for every w ∈ Λ? it holds
obs(w) = obs′(x1).obs′(x1.x2) . . . obs′(x1 . . . xn),
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• orwellian if there is a mapping obs′ : Λ × Λ? → ΛΘ ∪ {ε} such that for every w ∈ Λ? it holds
obs(w) = obs′(x1, w).obs′(x2, w) . . . obs′(xn, w),

• m-orwellian if there is a mapping obs′ : Λ × Λ? → ΛΘ ∪ {ε} such that for every w ∈ Λ? it
holds obs(w) = obs′(x1, w1).obs′(x2, w2) . . . obs′(xn, wn) where, for every i ∈ {1 . . . n}, wi =
xmax{1,i−m+1}.xmax{1,i−m+1}+1 . . . xmin{n,i+m−1}.

In the case of the static observation function each action is observed independently from its context.
In case of the dynamic observation function an observation of an action depends on the previous ones,
in case of the orwellian and m-orwellian observation function an observation of an action depends on
the all and m − 1 previous and subsequent actions in the sequence, respectively. The static observation
function is the special case of m-orwellian one for m = 1. Note that from the practical point of view
the m-orwellian observation functions are the most interesting ones. An observation expresses what an
observer - eavesdropper can see from a system behaviour and we will alternatively use both the terms
observation and observer with the same meaning.

Now suppose that we have some security property. This might be an execution of one or more clas-
sified actions, an execution of actions in a particular classified order which should be kept hidden, etc.
Suppose that this property is expressed by a predicate φ over sequences. We would like to know whether
the observer can deduce the validity of the property φ just by observing a sequence from Lp(A). The ob-
server cannot deduce the validity of φ if there are two sequences w,w′ ∈ Lp(A) such that φ(w),¬φ(w′)
and the sequences cannot be distinguished by the observer i.e. obs(w) = obs(w′). We formalize this
concept by the notion of opacity.

Definition 3.2. (Opacity)
Given a CHTTA A, a predicate φ over Lp(A) is opaque w.r.t. the observation function obs if for every
sequence w, w ∈ Lp(A) such that φ(w) holds, there exists a sequence w′, w′ ∈ Lp(A) such that ¬φ(w′)
holds and obs(w) = obs(w′). The set of CHTTAs for which the predicate φ is opaque with respect to
obs will be denoted by Opφ

obs.

The notion of opacity is rather general. With its help many other security properties can be defined
(anonymity, non-interference etc.) [3]. On the other side opacity, is undecidable even for the simplest
possible observation function, namely for the constant one, and for finite state processes.

Theorem 3.1. Opacity for CHTTA is undecidable.

Proof:
Let us consider an instance of the Post Correspondence Problem with (ui, vi) for i = 1, . . . , n. Let us
assume that {1, . . . , n} ⊆ CPub. Let A be a CHTTA consisting of a flat TTA with Σ = {1!, . . . , n!}, two
states q0 and �, and a set of transitions δ = {(q0, τ, true, ∅,�)} ∪ {(q0, i!, true, ∅, q0) | i ∈ 1, . . . , n}.
Let obs(w) = ε for every w ∈ Lp(A). We define φ(i1! . . . im!) with ij , 1 ≤ j ≤ m, in {1, . . . , n} to be
true iff ui1 . . . uim 6= vi1 . . . vim . Now, the opacity of φ with respect to obs would mean that there exists
another sequence j1! . . . jk! such that¬φ(j1! . . . jk!) holds, but this would imply uj1 . . . ujk

= uj1 . . . ujk
,

namely a solution of the Post Correspondence Problem. ut

Hence there is the need of formalizing a variant of opacity which is decidable but still practically useful,
i.e. such that with its help basic security notions could be still expressed.
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The undecidability of opacity has two main causes: the first is that the notions of observation func-
tions are very powerful (both dynamic and orwellian ones consider a potentially infinite memory to store
actions and subsequently to compute observations), the second is that the predicate φ might be difficult
to compute. We overcome these obstacles by expressing both an opacity function and predicate φ by
CHTTAs. First we start with predicate φ. We say that the predicate is expressible by an automaton if
there exists an automaton such that for every sequence w, φ(w) holds whenever sequence w is accepted
by the automaton. The formal definition is the following.

Definition 3.3. A predicate φ over Λ? is expressible by automaton Aφ if φ(w) holds iff w ∈ L(Aφ). A
predicate is a-expressible if such an automaton exists.

Example 3.1. Many security concepts are based on an information flow between private and public
system activities. Roughly speaking, there is not an information flow if for every sequence of system
actions which contains a private action there exists a sequence of actions which does not contain any
private action and the both sequences cannot be distinguished by an observer. These concepts can be
formalized by opacity when we consider predicate φ such that φ(w) = true iff w contains a privates
action. It is easy to see that such the predicate is expressible by the simple automaton Aφ which after
any action from the set of private actions can reach only states which are final.

Note that the class of a-expressible predicates is very rich and covers more types of predicates that the
simple ones mentioned in Example 3.1. By a-expressible predicates we can express rather sophisticated
properties which take into account not only a presence of a single private action but also order of actions,
their public context, their timing, and so on.

Now we explain how observation function obs can be expressed by an automaton. We assume that
sets ΣC and ΣΘ (the set of observable actions) have no common elements, and that τ cannot be observed,
namely obs(τ) = ε. We will say that the observation function is expressible by automaton if there exists
an automaton A such that every sequence accepted by A is obtained from w and o such that obs(w) = o.
The formal definition is the following, where x|y denotes the restriction of the sequence x to the set of
symbols y.

Definition 3.4. Let Θ ∩ C = ∅. An observation function obs : Λ? → Λ?
Θ is expressible by automaton

Aobs if for every w ∈ Λ? we have obs(w) = o iff there exists wo ∈ L(Aobs) such that wo|Λ = w and
wo|ΛΘ

= o. We say that an observation function is a-expressible if there exists such an automaton.

This definition assumes that an observer (defined by observation function) can always see elapsing of
time what is a natural restriction. On the other side a-expressible observation functions cover both
static and m-orwellian ones, which represent the most important class of observation functions from the
practical point of view.

Now we explain how we define a restricted version of opacity. We assume that predicates φ and ¬φ,
and that the observation function obs are expressible by Aφ, A¬φ and Aobs, respectively. Moreover, given
a CHTTA A, we denote with Af the CHTTA such thatL(Af ) = Lp(A). The idea is to compose Af , Aobs

and Aphi in parallel in order to simultaneously test whether a string w belongs to L(Af ), assess whether
φ(w) holds and obtain the corresponding observation. If φ(w) holds, we can replace Aφ with A¬φ in the
parallel composition and test whether there exists w′ such that ¬φ(w′) holds with the same observation.
In order to allow the three automata of the parallel composition to be executed autonomously (without
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communicating each other) and in a synchronized manner (in order to ensure that they are working on
the same string) we rename all the actions of Aφ, A¬φ and Aobs with different sets of actions and include
an additional automaton G to the parallel composition which accepts the language (α.αφ.αobs)? where
αφ and αobs are the actions of Aφ and Aobs corresponding to action α of Af .

Now let us consider automaton AA,φ,obs = (((G||Af )||Aφ)||Aobs). From its construction we have
that if o belongs to L(AA,φ,obs,ΣΘ) then o|ΛΘ

is an observation of some word w for which φ(w) holds.

Theorem 3.2. Let o ∈ L(AA,φ,obs,ΣΘ), there exists w ∈ Lp(A) s.t. φ(w) holds and obs(w) = o|ΛΘ
.

Proof:
Let o ∈ L(AA,φ,obs,ΣΘ). From the construction of AA,φ,obs we know that for a sequence of type
(α.αφ.αobs)? generated by G, all automata Af , Aφ, Aobs reached final states and hence the corresponding
sequence of type (α)? was accepted by Af (i.e. it belongs to Lp(A)), the corresponding sequence of type
(αφ)? was accepted by Aφ (i.e. φ holds) and the corresponding sequence from (αobs)? was accepted by
Aobs. Sequence o contains also actions τ resulting from the communications among G, Af , Aφ, Aobs but
they are not taken into account. The proof follows immediately from the definition of Aobs. ut

Now we define the reduced opacity (r-opacity) property.

Definition 3.5. Let A be a CHTTA. We say that A is r-opaque with respect to predicate φ expressible
by Aφ and predicate ¬φ expressible by A¬φ, respectively and with respect to observation function obs
expressible by Aobs iff

L((AA,φ,obs,ΣΘ)|ΛΘ
⊆ L(AA,¬φ,obs,ΣΘ)|ΛΘ

.

We denote the set of CHTTAs r-opaque with respect to φ,¬φ, obs as r-Opφ
obs.

Theorem 3.3. r-Opφ
obs ⊂ Opφ

obs.

Proof:
Let A ∈ r-Opφ

obs and let w ∈ Lp(A) such that φ(w) holds. Then, since L((AA,φ,obs,ΣΘ)|ΛΘ
⊆

L(AA,¬φ,obs,ΣΘ)|ΛΘ
we have by Def. 3.5 and Th. 3.2 that there exists w′ ∈ Lp(A) s.t. ¬φ(w) holds and

obs(w) = obs(w), i.e. A ∈ Opφ
obs. ut

Property r–Opφ
obs can be reduced to the language inclusion problem of Timed Automata. First we recall

from [11] the following theorem which states that for any CHTTA there is a flat automaton which can
perform the same sequences of actions. As a consequence we have that the class of CHTTAs is equivalent
to the class of Timed Automata.

Theorem 3.4. Let A be a CHTTA. it holds that (A, (c0, v0))
w=⇒ (A, (cn, vn)) iff (A′, (c0, v

′
0))

w=⇒
(A′, (cn, v′n)) where A′ = Flat(A).

Moreover, for every Timed Automaton A we can construct automaton Aτ such that A accepts word w iff
A′ accepts word w′ which is obtained from w by removing all actions τ . Now, since it is easy to see that
the restrictions in Def. 3.5 remove only occurrences of τ , from Th. 3.4 we get the following property.
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Theorem 3.5. The property r-opacity can be reduced to the language inclusion problem for automata
Aτ

A,φ,obs and Aτ
A,¬φ,obs, i.e to the problem L((Aτ

A,φ,obs,ΣΘ) ⊆ L(Aτ
A,¬φ,obs,ΣΘ).

In general, the language inclusion problem for Timed Automata is not decidable [1]. However, it is
decidable for many interesting classes of automata.

Theorem 3.6. The property r-opacity is decidable if automaton Aτ
A,¬φ,obs is deterministic or if automa-

ton Aτ
A,φ,obs has at most one clock or if 0 is the only constant appearing among its clock constraints.

Proof:
According to Th. 3.5, r-opacity can be reduced to the language inclusion problem L((Aτ

A,φ,obs,ΣΘ) ⊆
L(Aτ

A,¬φ,obs,ΣΘ). This problem is decidable if automaton Aτ
A,¬φ,obs is deterministic (see [1]) or if

automaton Aτ
A,φ,obs has at most one clock (see [12]) or if 0 is the only constant appearing among its

clock constraints of automaton Aτ
A,φ,obs (see [12]). ut

Till now we have omitted the discussion about abortions as a tool for performing timing attacks. Suppose
that some abortion could be provoked by an intruder. This means that � becomes an input non-public
action and to distinguish different occurrences of such actions we will use indexes. More precisely, we
assume that there might be actions that cannot be aborted by the intruder and actions that can be aborted.
It is a task of a designer of system A to identify those ”weak” places and replace � by �i?. We will
call such resulting automaton an abortion-opened automaton and we will denote it by Aa. The intruder
forces an abortion of a corresponding activity by performing �i!. Note that for actions �i?,�i! only the
rule P2 from Definition 2.3 will be applied. Hence we model every intruder as an automaton I that can
perform only transitions labeled by �i!. We will call an intruder trivial either if it cannot abort any action
or it can always abort any action. Now we can define r-opacity with respect to some intruder I .

Definition 3.6. Let A be a CHTTA. We say that A is r-opaque with respect to observation automaton
Aobs, intruder I and automata Aφ and A¬φ iff (Aa||I) is r-opaque with respect to observation automaton
Aobs and automata Aφ and A¬φ for every abortion-opened CHTTA Aa obtained from A.

The set of CHTTAs which are r-opaque with respect to Aobs, I, Aφ, A¬φ will be denoted by r-Opφ
Iobs.

The relationship between r-Opφ
obs and r-Opφ

Iobs is in the following theorem.

Theorem 3.7. r-Opφ
Iobs ⊆ r-Opφ

obs.

Proof:
Let A ∈ r-Opφ

Iobs. That means that (Aa||I) is r-opaque for every abortion-opened CHTTA Aa obtained
from A. Hence (Aa||I) ∈ r-Opφ

obs for any Aa and hence also for such Aa that intruder I cannot abort
any action of Aa, i.e. (Aa||I) and A perform the same sequences of actions, and therefore we get A ∈ r-
Opφ

obs what proves that r-Opφ
Iobs ⊆ r-Opφ

obs. ut

Note that the inclusion from Theorem 3.7 is proper if the intruder is non-trivial and predicate φ
expresses, for example, the property that a sequence contains the private action h (see Fig. 2a).

Note that for r-Opφ
Iobs we have similar property as the one holding for r-opacity (see Theorem 3.6).

As an extreme case we might consider a situation when at any time any activity can be aborted. This
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Figure 2. Examples of abortion–opened CHTTAs.

might be modeled by replacing every � by �? and by automaton which can at any time perform �!.
Instead of this we can model this type of attacks simply by putting � among public and visible actions.
We say that action x is visible with respect to observation function iff obs(u.x.v) 6= obs(u.v).

Definition 3.7. Let A be a CHTTA. We say that A is ar-opaque with respect to observation automaton
Aobs for which � is visible and automata Aφ and A¬φ iff

L((AA,φ,obs,ΣΘ ∪�)|ΣΘ∪IR>0 ⊆ L(AA,¬φ,obs,ΣΘ ∪�)|ΣΘ∪IR>0 .

We denote the set of CHTTAs ar-opaque with respect to Aobs, Aφ, A¬φ as ar-Opφ
obs.

Theorem 3.8. ar-Opφ
obs ⊆ r-Opφ

Iobs.

Proof:
If A ∈ ar-Opφ

obs all possible abortions are visible but there is no information flow. Hence, A ∈ r-Opφ
Iobs

as only some of abortions are visible by I . ut

The inclusion in Theorem 3.8 is proper for nontrivial intruders (see Fig. 2b).
As regards timing of actions it is not clear from the above mentioned security concepts whether

possible information flow is due to time information contained in observations or not, namely whether
there is a danger of timing attack or not. To formalize this concept, let us assume an untimed version
obst of observation obs i.e. obst(w) = obst(wt) = obs(wt), where wt is obtained from w by removing
all timing information x ∈ IR>0. By Lp(A)t we will denote sequences from Lp(A) from which timing
information is removed.

Now we can formalize a notion of being opened to timing attacks.

Definition 3.8. (Opening for Timing Attacks)
Let A be CHTTA. We say that A is opened to timing attacks with respect to predicate φ over Lp(A)
and the observation function obs if for every sequence w, w ∈ Lp(A) such that φ(w) holds, there exists
a sequence w′ ∈ Lp(A) such that ¬φ(w′) holds and obst(w) = obst(w′) and there exists a sequence
w ∈ Lp(A) such that φ(w) holds, but there is not a sequence w′ ∈ Lp(A) such that ¬φ(w′) holds and
obs(w) = obs(w′).

In order to define a restricted version of the above notion we consider opacity for the case when elapsing
of time is not observed (tr-opacity). It is denoted by tr-Opφ

obs and it is formally defined as r-opacity (see
Def. 3.5) but with both the languages restricted only to Θ ∪ IR>0. Decidability of tr-opacity follows
immediately from decidability of the language inclusion for untimed languages [1].

Now we can define the property “Restricted Opening for Timing Attacks”.

Definition 3.9. (Restricted Opening for Timing Attacks)
Let A be a CHTTA. We say that A is opened to timing attacks with respect to observation automaton
Aobs and automata Aφ and A¬φ iff A ∈ tr-Opφ

obs and A 6∈ r-Opφ
obs.
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The decidability of this property follows from Th. 3.6 and the decidability of tr-opacity.

4. Opacity of Long–Running Transactions

A long–running transaction (LRT) is a composition of atomic activities that are either successfully ex-
ecuted (committed) or no effect is observed if their execution fails (aborted). Partial executions of an
LRT are not desirable, and, if they occur, they must be compensated for. Hence, all activities Ai in an
LRT have a compensating activity Bi that can be invoked to repair from the effects of a successful exe-
cution of Ai if some failure occurs later. Compensations are assumed to always complete their execution
successfully (they never abort).

Transactional activities (including compensations) can be composed sequentially and in parallel.
Given activities A1, . . . , An ∈ CHTTAΣPub

A and compensations B1, . . . , Bn ∈ CHTTAΣPub
A , we can

define a language for LRTs as follows:

T ::= Ai�Bi

∣∣ T · T
∣∣ T ||T .

The LRT A�B denotes the association of the atomic activity A with the compensation B. Given
two LRTs T1 and T2, with T1 · T2 we denote their sequential composition and with T1||T2 their parallel
composition.

In the sequential composition of n transactional activities A1�B1 · . . . · An�Bn, either the entire
sequence A1, . . . , An is executed or the compensated sequence A1, . . . , Ai, Bi, . . . , B1 is executed for
i < n. The first case means that all activities in the sequence completed successfully, and the second
one stands for the abort of activity Ai+1; hence, all the already completed activities A1, . . . , Ai are
recovered by executing the compensations Bi, . . . , B1. The sequential composition is associated with a
overall compensation to be used for further composition. Such a compensation prescribes the execution
of Bn, . . . , B1 in the order.

In the parallel composition of n transactional activities A1�B1|| . . . ||An�Bn, all the atomic activities
are assumed to be executed concurrently, and the whole transaction terminates when all of them com-
plete. If some Ai aborts, then compensation activities should be invoked for the activities that completed
successfully. In this latter case, the result of the whole transaction is “abort”. The overall compensation
of a parallel composition prescribes the concurrent execution of all the compensations B1, . . . , Bn.

In [11] we have defined the function [[·]] which maps any LRT into an LRT of the form A�B. Such
a function transforms sequential and parallel compositions of LRTs into suitable composition of the
CHTTAs of their components. As a consequence, A and B describe the overall behaviour and the overall
compensation, respectively, of the considered LRT. Assessing opacity of a predicate on the execution of
an LRT can be reduced to assessing opacity of the same predicate on the CHTTAs A and B given by the
function [[·]].

Definition 4.1. (φ–opacity)
Given an LRT T such that [[T ]] = A�B and a predicate φ over Lp(A) ∪ Lp(B), T is φ–opaque with
respect to an observation function obs if and only if both φ restricted to Lp(A) and φ restricted to Lp(B)
are opaque with respect to obs.

Now, we want to study under which conditions φ–opacity may be established compositionally, namely
may be deduced by the φ–opacity of components.
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Given two LRTs T1 and T2 such that [[T1]] = A1�B1, [[T2]] = A2�B2 and [[T1 · T2]] = A�B as defined
in [11], it is easy to see that the languages accepted by A and B can be constructed by those accepted by
A1, A2, B1 and B2, namely L(A) = L(A)� ∪ L(A)⊗ and L(B) = L(B)� ∪ L(B)⊗, where

L(A)� = L(A1)� · L(A2)� L(A)⊗ = L(A1)⊗ ∪ L(A1)� · L(A2)⊗ · L(B1)
L(B)� = L(B2)� · L(B1)� L(B)⊗ = ∅

with · the usual concatenation of languages. Similarly, if [[T1||T2]] = A′ � B′, it is easy to see that
L(A′) = L(A′)� ∪ L(A′)⊗ and L(B′) = L(B′)� ∪ L(B′)⊗, where

L(A′)� = L(A1)� ⊕ L(A2)�
L(A′)⊗ = L(A1)⊗ ⊕ L(A2)⊗ ∪ (L(Ai)� ⊕ L(Aj)⊗) · L(Bi)

L(B′)� = L(B2)� ⊕ L(B1)� L(B′)⊗ = ∅

with i, j ∈ {1, 2}, i 6= j, · the concatenation and ⊕ the usual shuffle operator.
We say that a predicate φ over the language L(A) is decomposable if and only if ∀w1, w2 ∈

L(A).φ(w1⊕w2) =⇒ φ(w1)∨φ(w2), where w1⊕w2 denotes any possible shuffling of w1 and w2 (in-
cluding w1.w2), and we say that φ is compositional if and only if ∀w1, w2 ∈ L(A).φ(w1) ∧ φ(w2) =⇒
φ(w1 ⊕ w2).

We show some examples of LRTs whose opacity cannot be established by composition. Let us
consider an LRT T = A�B such that L(A)� = {a!, b!} ∪ IR>0 and L(A)⊗ = L(B) = IR>0. Assume
that φ(w) = true if and only if w contains exactly two occurrences of a!, and obs(x) = x for any
x ∈ {a!, b!} ∪ IR>0. It is easy to see that T is φ-opaque with respect to obs, but φ-opacity does not
hold for T · T . Assume now φ′(w) = true if and only if w contains at least one occurrence of a!,
and obs′ mapping each pair of consecutive symbols x, y of w to c! if x = y = a! and to ε otherwise
(for example, obs′(a!a!b!a!a!a!) = c!c!c!). Also in this case T is φ′-opaque with respect to obs′, but
φ′-opacity does not hold for T · T . We note that obs′ could be expressed either as a dynamic, or as an
orwellian, or as an m-orwellian (m > 1) observation. Finally, let us consider LRTs T1 = A1�B1 and
T2 = A2�B2 such that L(A1)� = {a!, b!} ∪ IR>0,L(A1)⊗ = {b!} ∪ IR>0,L(A2)� = {b!} ∪ IR>0

and L(A2)⊗ = L(B1) = L(B2) = IR>0. Assume φ′ as above and obs′′ such that obs′′(a!) = ε and
obs′′(b!) = b!. Both T1 and T2 are φ′-opaque with respect to obs′′, but φ′-opacity does not hold for
T1 · T2.

The examples show that we cannot expect that φ-opacity is compositional when the predicate φ is
not decomposable (as in the first example), or the observation function is not static (as in the second
example), or one of the CHTTAs of the components, say A, is opaque because it accepts two strings w
and w′ such that φ(w) and ¬φ(w′) hold with obs(w) = obs(w′), but with w ∈ L(A)� and w′ ∈ L(A)⊗
(as in the third example). Similar examples can be given to consider the parallel composition of LRTs
and LRTs with non–trivial compensations.

We shall show that by restricting predicates, observations and LRTs as the above examples suggest,
we are able to prove compositionality of φ-opacity. We first need a new concept and two lemmata.

Definition 4.2. (cφ-opacity)
Given an LRT T with [[T ]] = A�B, T is coherently φ-opaque (cφ-opaque) with respect to obs if and only
if for all w ∈ L(A)∪L(B) such that φ(w) holds, there exists w′ ∈ L(A)∪L(B) with obs(w) = obs(w′)
and w,w′ are both either in L(A)�, or in L(A)⊗, or in L(B)�, or in L(B)⊗.
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Lemma 4.1. Given a predicate φ over a language L(A), if φ is decomposable, then ¬φ is compositional.

Proof:
φ is decomposable means ∀w1, w2 ∈ L(A).φ(w1 ⊕ w2) =⇒ φ(w1) ∨ φ(w2). Now, assume that ¬φ is
not compositional, namely there exist w′

1 and w′
2 such that ¬φ(w′

1)∧¬φ(w′
2) holds but ¬φ(w′

1⊕w′
2) does

not. This means that φ(w′
1 ⊕ w′

2) holds, and by the decomposability of φ we obtain that φ(w′
1) ∨ φ(w′

1)
holds, which is a contradiction. ut

Lemma 4.2. If an observation obs is static, obs(w1 ⊕ w2) = obs(w1)⊕ obs(w2).

Proof:
By definition of static observation. ut

Theorem 4.1. If φ is a decomposable predicate, obs is static observation function and T1, T2 are cφ-
opaque, then both T1 · T2 and T1||T2 are cφ-opaque.

Proof:
Let us assume [[T1]] = A1 �B1, [[T2]] = A2 �B2 and either [[T1 · T2]] = A�B or [[T1||T2]] = A�B.
The decomposability of φ implies that for all w ∈ Lp(A) such that φ(w) holds w results from the
composition of strings w1, . . . , wn(1 ≤ n ≤ 3) such that w1 ∈ Lp(A1) ∪ Lp(A1) ∪ Lp(B1) ∪ Lp(B2)
and φ(w2) holds for some i, 1 ≤ i ≤ n. The cφ-opacity of T1 and T2 ensures that for each string wi

such that φ(wi) holds there exists w′
i accepted by the same CHTTA and such that ¬φ(w′

i) holds with
obs(wi) = obs(w′

i). Now we can reconstruct a string w′ by choosing either element wi or w′
i, for each

i ∈ {1, . . . , n}, depending whether ¬φ(wi) or ¬φ(w′
i) holds, respectively. By Lemma 4.1 we have that

¬φ(w′) holds, and by Lemma 4.2 we have that obs(w) = obs(w′). We can reason analogously as regards
Lp(B). Hence, we have the cφ-opacity of the composition of T1 and T2. ut

5. Conclusions

In a previous paper we have introduced Communicating Hierarchical Transaction-based Timed Automata
(CHTTAs) to model systems performing long–running transactions. In this paper we have introduced for
these systems a concept of security which is based on the notion of opacity of CHTTAs. We have
given various definitions of opacity and compared their expressiveness. We have studied under which
conditions security of long–running transactions can be established compositionally.
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