
Fundamenta Informaticae 93 (2009) 1–15 1

DOI 10.3233/FI-2009-86

IOS Press

Quantifying Security for Timed Process Algebras∗

Damas P. Gruska†

Institute of Informatics, Comenius University

Mlynska dolina, 842 48 Bratislava, Slovakia

gruska@fmph.uniba.sk.

Abstract. A quantification of process’s security by quantification of an amount of information flow
is defined and studied in the framework of timed process algebras. The resulting quantified security
is compared with other (qualitative) security notions. Unprecise and limited observations are defined
and discussed.

Keywords: information flow, information theory, opacity, surprisal,uncertainty, security, unprecise
and limited observations

1. Introduction

The aim of this paper is to quantify an amount of information flow in the framework of timed process
algebras. To express the information flow we will use observation functions and opacity. The observa-
tion functions express what an intruder can observe from systems behaviour. They can hide some system
activities (for example, internal actions, communications via encrypted channels, actions hidden by a
firewall etc) or they can express unprecise observations forwhich an outcome of an observation is not
precisely given i.e. the outcome might be a set of possible results or a random variable. The information
flow will be expressed by opacity. It is a qualitative property. A predicate is opaque if from observation
of system activities an observer cannot deduce whether the predicate holds or it does not hold. For many
applications this property is too restrictive. Predicates(properties) which are not opaque are considered
to be insecure since an intruder can detect validity of the predicates by observing system behavior. On

∗Work supported by European Science Foundation program AutoMathA.
†Address for correspondence: Institute of Informatics, Comenius University, Mlynska dolina, 842 48 Bratislava, Slovakia

2 D.P. Gruska / Quantifying Security for Timed Process Algebras

the other side they are considered to be insecure also in the case that predicates validity can be deduced
form observations only with a very low probability or such deductions require an unrealistic number
of observations (for example, usually access control processes exhibit some information flow showing
which password is not correct but they are still considered to be secure under reasonable password pol-
icy). Hence there is a need to quantify an amount of information flow which can be gained from the
observations. For this we use Shannon’s information theorywhich enable us to quantify an amount of
information which could be obtained about validity of givenpredicateφ and later an amount of direct
information flow between processes’s inputs and outputs. Wewill use concepts assurprisal, uncer-
tainty, mutual information, conditional mutual information and prove some of security properties based
on them. Some comparison with qualitative security notionsknown in the literature will be presented.
Later we will study the case when an observer cannot precisely or unlimitedly long observe systems
behavior and the case when information flows are not based on opacity but are based on a conditional
mutual information between private and public inputs/outputs.

As regards quantifying information flow there is a number of papers devoted to its analysis in the
framework of imperative languages (see [4] for an overview). In [15] an information flow is studied in
the framework of process algebras. Particularly, it is investigated how much information i.e. a number
of bits can be transmitted by observing some timed system activities. Here we start with a quantification
of opacity (opacity was introduced in [1, 2]). Opacity is very general notion and many security prop-
erties can be viewed as special cases of opacity (see for example [11], where it was proved that many
security properties defined for process algebras can be seenas special cases of opacity and moreover
other, stronger security properties can be defined by means of opacity). A weaker form of ”probabilistic”
opacity developed in the framework of probabilistic timed process algebra has been studied in [10]. The
model in which an observer could observe time elapsing between two actions only with limited precision
or during a limited time window is studied in [12, 13]. In these papers security properties are considered
to be qualitative but capabilities of an intruder have some quantitative aspects but his observations are
still precise what represents a different approach that onestudied here.

In this paper we will work with the timed process algebra instead of a probabilistic timed process
algebra. This decision was taken for the sake of simplicity but all definitions can be easily translated
to probabilistic setting (see a discussion in the last section) and hence the notions we developed could
be applied for any type of probabilistic process algebra. While in [10] a special probabilistic process
algebra was chosen as a basic formalism and we measured probability with which an attacker can learn
validity of a predicate over processes traces, here we quantify an amount of information about validity
of such predicate which can be gained by attacker who can observe processes traces. We quantify also
an amount of information about private inputs which can be gained by an attacker which can see public
inputs and outputs.

The paper is organized as follows. In Section 2 we describe the timed process algebra TPA which
will be used as a basic formalism. In Section 3 we present and investigate quantified information flow
for different observation functions and security requirements. We introduce surprisal and uncertainty of
security properties which could be expressed by means of predicates over system activities and mutual
information flow between system (private/public) inputs and (public) outputs, respectively.

D.P. Gruska / Quantifying Security for Timed Process Algebras 3

2. Timed Process Algebra

In this section we define Timed Process Algebra, TPA for short. TPA is based on Milner’s CCS but the
special time actiont which expresses elapsing of (discrete) time is added. The presented language is
a slight simplification of Timed Security Process Algebra introduced in [5]. We omit an explicit idling
operatorι used in tSPA and instead of this we allow implicit idling of processes. Hence processes
can perform either ”enforced idling” by performingt actions which are explicitly expressed in their
descriptions or ”voluntary idling”. But in the both cases internal communications have priority to action
t in the case of the parallel operator. Moreover we do not divide actions into private and public ones as it
is in tSPA. TPA differs also from the tCryptoSPA (see [9]). TPA does not use value passing and strictly
preservestime determinacyin case of choice operator+ what is not the case of tCryptoSPA.

To define the language TPA, we first assume a set of atomic action symbolsA not containing symbols
τ andt, and such that for everya ∈ A there existsa ∈ A anda = a. We defineAct = A ∪ {τ}, Actt =
Act∪{t}. We assume thata, b, . . . range overA, u, v, . . . range overAct, andx, y . . . range overActt.
Assume the signatureΣ =

⋃
n∈{0,1,2} Σn, where

Σ0 = {Nil}

Σ1 = {x. | x ∈ A ∪ {t}} ∪ {[S] | S is a relabeling function}

∪{\M | M ⊆ A}

Σ2 = {|,+}

with the agreement to write unary action operators in prefix form, the unary operators[S], \M in postfix
form, and the rest of operators in infix form. Relabeling functions, S : Actt → Actt are such that
S(a) = S(ā) for a ∈ A,S(τ) = τ andS(t) = t.

The set of TPA terms over the signatureΣ is defined by the following BNF notation:

P ::= X | op(P1, P2, . . . Pn) | µXP

whereX ∈ V ar, V ar is a set of process variables,P,P1, . . . Pn are TPA terms,µX− is the binding
construct,op ∈ Σ.

The set of CCS terms consists of TPA terms withoutt action. We will use an usual definition of
opened and closed terms whereµX is the only binding operator. Closed terms which are t-guarded (each
occurrence ofX is within some subexpressiont.A i.e. between any twot actions only finitely many non
timed actions can be performed) are called TPA processes. Note thatNil will be often omitted from
processes descriptions and hence, for example, instead ofa.b.Nil we will write justa.b.

We give a structural operational semantics of terms by meansof labeled transition systems. The set
of terms represents a set of states, labels are actions fromActt. The transition relation→ is a subset of
TPA× Actt × TPA. We writeP

x
→ P ′ instead of(P, x, P ′) ∈ → andP 6

x
→ if there is noP ′ such that

P
x
→ P ′. The meaning of the expressionP

x
→ P ′ is that the termP can evolve toP ′ by performing

actionx, by P
x
→ we will denote that there exists a termP ′ such thatP

x
→ P ′. We define the transition

4 D.P. Gruska / Quantifying Security for Timed Process Algebras

relation as the least relation satisfying the inference rules for CCS plus the following inference rules:

Nil
t
→ Nil

A1
u.P

t
→ u.P

A2

P
t
→ P ′, Q

t
→ Q′, P | Q 6

τ
→

P | Q
t
→ P ′ | Q′

Pa
P

t
→ P ′, Q

t
→ Q′

P + Q
t
→ P ′ + Q′

S

Here we mention the rules that are new with respect to CCS. AxiomsA1, A2 allow arbitrary idling.
Concurrent processes can idle only if there is no possibility of an internal communication (Pa). A run
of time is deterministic (S). Regarding behavioral relations we will work with the timed version of weak
trace equivalence. Note that here we will use also a concept of observations which contain complete
information which includes alsoτ actions and not just actions fromA andt action as it is in [5]. For
s = x1.x2.xn, xi ∈ Actt we writeP

s
→ instead ofP

x1→
x2→ · · ·

xn→ and we say thats is a trace of
P . The set of all traces ofP will be denoted byTr(P). We will write P

x
⇒ P ′ iff P (

τ
→)∗

x
→ (

τ
→)∗P ′

andP
s
⇒ instead ofP

x1⇒
x2⇒ · · ·

xn⇒. By ǫ we will denote the empty sequence of actions, bySucc(P)
we will denote the set of all successors ofP andSort(P) = {x|P

s.x
−→ for somes ∈ Actt⋆}. If the set

Succ(P) is finite we say thatP is finite state.

Definition 2.1. The set of weak timed traces of processP is defined as
Trw(P) = {s ∈ (A ∪ {t})⋆|∃P ′.P

s
⇒ P ′}. Two processP andQ are weakly timed trace equivalent

(P ≈w Q) iff Trw(P) = Trw(Q).

3. Information Flow

To formalize an information flow we do not divide actions intopublic and private ones at the system
description level, as it is done for example in [9, 3], but we use a more general concept of observation
and opacity. This concept was recently exploited in [1] and [2] in a framework of Petri Nets and transition
systems, respectively.

First we define observation function on sequences fromActt⋆.

Definition 3.1. (Observation)
Let Θ be a set of elements called observables. Any functionO : Actt⋆ → Θ⋆ is an observation function.
It is called static /dynamic /orwellian / m-orwellian(m ≥ 1) if the following conditions hold respectively
(below we assumew = x1 . . . xn):

• static if there is a mappingO′ : Actt → Θ ∪ {ǫ} such that for everyw ∈ Actt⋆ it holdsO(w) =
O′(x1) . . .O′(xn),

• dynamic if there is a mappingO′ : Actt⋆ → Θ ∪ {ǫ} such that for everyw ∈ Actt⋆ it holds
O(w) = O′(x1).O

′(x1.x2) . . .O′(x1 . . . xn),

• orwellian if there is a mappingO′ : Actt × Actt⋆ → Θ ∪ {ǫ} such that for everyw ∈ Actt⋆ it
holdsO(w) = O′(x1, w).O′(x2, w) . . .O′(xn, w),

D.P. Gruska / Quantifying Security for Timed Process Algebras 5

• m-orwellian if there is a mappingO′ : Actt × Actt⋆ → Θ ∪ {ǫ} such that for everyw ∈ Actt⋆

it holdsO(w) = O′(x1, w1).O
′(x2, w2) . . .O′(xn, wn) where

wi = xmax{1,i−m+1}.xmax{1,i−m+1}+1 . . . xmin{n,i+m−1}.

In the case of the static observation function each action isobserved independently from its context.
In the case of the dynamic observation function an observation of an action depends on the previous
ones, in the case of the orwellian and m-orwellian observation function an observation of an action
depends on the all and onm previous actions in the sequence, respectively. The staticobservation
function is the special case of m-orwellian one form = 1. Note that from the practical point of view
the m-orwellian observation functions are the most interesting ones. An observation expresses what an
observer - eavesdropper can see from a system behaviour and we will alternatively use both the terms
(observation - observer) with the same meaning.

3.1. Opacity

Now suppose that we have some security property. This might be an execution of one or more classified
actions, an execution of actions in a particular classified order which should be kept hidden, etc. Suppose
that this property is expressed by predicateφ over process traces. We would like to know whether an
observer can deduce the validity of the propertyφ just by observing sequences of actions fromActt⋆

performed by given process.
The observer cannot deduce the validity ofφ if there are two tracesw,w′ ∈ Actt⋆ such that

φ(w),¬φ(w′) and the traces cannot be distinguished by the observer i.e.O(w) = O(w′). We formalize
this concept by opacity.

Definition 3.2. (Opacity)
Given processP , a predicateφ over Actt⋆ is opaque w.r.t. the observation functionO if for every
sequencew, w ∈ Tr(P) such thatφ(w) holds andO(w) 6= ǫ, there exists a sequencew′, w′ ∈ Tr(P)
such that¬φ(w′) holds andO(w) = O(w′). The set of processes for which the predicateφ is opaque
with respect toO will be denoted byOpφ

O.

The notion of opacity is rather general. With its help many other security properties can be defined
(anonymity, non-interference etc. see [2]). On the other side, opacity is undecidable even for the simplest
possible observation function, namely for the constant one, and for finite state processes (see [14]).

Example 3.1. Let O : Actt → Actt ∪ {ǫ} such thatO(a) = O(b) = ǫ,O(τ) = τ and letP =
((b.t.c̄ + a.c̄)|c) \ {c}. Let φ1(s) if s containsb andφ2(s) if s containsa. Then the observer given byO
can detect occurrence of the actiona but notb i.e. P ∈ Opφ1

O but P 6∈ Opφ
O since from observing justτ

action (without any delay) it is clear that actiona was performed. ⊓⊔

Example 3.2. Let P = h.Nil andO(h) = ǫ. ClearlyP ∈ Opφ
O for anyφ sinceP cannot perform any

sequence of actions such thatO(s) 6= ǫ. ⊓⊔

In [11] Opφ
O property is compared with Strong Nondeterministic Non-Interference (SNNI, for short).

We recall its definition (see [5]). Suppose that all actions are divided in two groups, namely public (low
level) actionsL and private (high level) actionsH i.e. A = L∪H,L∩H = ∅. Then processP has SNNI

6 D.P. Gruska / Quantifying Security for Timed Process Algebras

property ifP \ H behaves likeP for which all high level actions are hidden for an observer. To express
this hiding we introduce hiding= operatorP/M,M ⊆ A, for which if P

a
→ P ′ thenP/M

a
→ P ′/M

whenevera 6∈ M ∪ M̄ andP/M
τ
→ P ′/M whenevera ∈ M ∪ M̄ . Formal definition of SNNI follows.

Definition 3.3. Let P ∈ TPA. ThenP ∈ SNNI iff P \ H ≈w P/H.

Now we can compareNIFφ
O andSNNI properties. Clearly, the former one is more general (see

[11]).

Theorem 3.1. P ∈ SNNI iff P ∈ Opφ
O for O(h) = O(τ) = ǫ, h ∈ H, O(x) = x, x ∈ L andφ(s) iff

s contains an element fromH.

Note that byOpφ
O we can model situations which cannot be described by SNNI. For example, the

definition of SNNI expects that everything what cannot be observed is private. So it cannot model
situations when we do not see some actions and we are not interested in their occurrences at all (see
examples from the beginning of the next subsection).

3.2. Quantifying opacity

Opacity, as it is defined in Definition 3.2, is frequently criticized from the both side - as a qualitative
property it might happen that sometimes it is too weak or thatin other cases it can be too strong.

Example 3.3. Let us consider processP1 =
∑2k

i=1 hi.(
∑2k

j=1,j 6=i lj.l̄refused + li.l̄accepted) O(hi) = ǫ,
for all i, O(x) = x for other actions, and predicateφi such thatφi(s) holds iff s contains actionhi for
some giveni. ClearlyP1 6∈ Opφi

O since an occurrence of actionhi is not ”hidden” by any other action
and so by observingli.l̄accepted we have certainty thathi has been performed. ButP1, which represents a
simple access control process, is considered to be secure ifk is big enough. So in this case for sufficiently
big k opacity looks like to be too strong security property. On theother side if we considerφ′

i = ¬φi we

have againP1 6∈ Op
φ′

i

O but validity of φ′
i is much more likely under observationli.l̄refused and security

of P1 with respect toφ′
i is in this case much more lower.

Example 3.4. Let us consider processQ =
∑

i∈{0,1} h1i.h2i.h(k−1)i.(ln + hki.τ) where n =
∑k

j=1 hji.2
j−1. Let us suppose thatO(hji) = ǫ, for all j, i andO(x) = x for the other actions and

φn(s), for 2(k−1) < n ≤ 2k, is true iff theh actions contained ins represent binary notation ofn (see
definition of ln). ClearlyQ ∈ Opφn

O but an attacker can learn all bits ofn, say of a long private key,
except of the last one. Such system is usually not consideredto be secure since the space of all possible
keys of size2k can be reduced to only two possibilities and hence the private key can be, in practice,
discovered.

Example 3.5. Now let us consider processP2 =
∑2k

i=1 hi.µX(
∑2k

j=1,j 6=i lj .l̄refused.X+ li.l̄accepted.X).
If an attacker can observe this process for an unlimited timeand can influence public datali than (s)he
can learn validity ofφ for anyk with absolute certainty. But under limited length of observations process
P2 can be still considered to be secure fork being big enough.

D.P. Gruska / Quantifying Security for Timed Process Algebras 7

To overcame an insufficiency of (qualitative) opacity illustrated in the previous examples we will
define quantitative measure of opacity. To do so we need some preparatory work. The multiset of finite
traces ofP will be denoted byMTr(P). For example, the tracea.b is contained inMTr(a.bNil +
a.b.c.Nil) two times. There exist a few techniques how to define this multiset, originally developed for
probabilistic process algebras (but here we will assume that all sequences have the same probability).
For example, in [16] a technique of schedulers are used to resolve the nondeterminism and in [8] all
transitions are indexed and hence pathes can be distinguished by different indexes. In the former case,
every scheduler defines (schedules) a particular computation path and hence two different schedulers
determine different pathes, in the later case, the index records which transition was chosen in the case
of several possibilities. The set of indexes for processP consists of sequencesi1 . . . ik whereij ∈
{0, 1, 2} ∪ {0, 1, 2} × {0, 1, 2} . An index records how a computation path ofP could be derived, i.e.
it records which process was chosen in case of nondeterminism. If there is only one possible successor
then transitions are indexed by1 (i.e. correspondingil = 1) If transitionP

x
→ P ′ is indexed byk (i.e.

correspondingil = k) then transitionP + Q
x
→ P ′ is indexed byk.1 and transitionQ + P

x
→ P ′

is indexed byk.2. If transitionsP
x
→ P ′ and Q

x
→ Q′ are indexed byk and l, respectively, then

transitions ofP |Q have indexes from{(k, 0), (0, l), (k, l)} depending on which transition rule for the
parallel composition was applied. Every index defines at most one trace and the set of all indexes defines
the multisets of tracesMTr(P).

3.3. Information theory

To express quantity of information flow we will exploit Schannon information theory (see [17]). LetX
be a discrete random variable and letx ranges over the set of values whichX may take. Byp(x) we will
denote probability thatX takes the valuex.

Self-information (or surprisal) is a measure of the information content associated with the outcome
of the random variableX. It is defined as the following:

H(x) = logb

1

p(x)
.

We putH(x) = ∞ if p(x) = 0. The information entropy (also called self-information ora measure
of uncertainty) of the variableX is denotedH(X) and is defined as the following:

H(X) =
∑

x

p(x). logb

1

p(x)
.

We definep(x). logb
1

p(x) = 0 if p(x) = 0. We will work with the baseb of logb equal to 2 and hence
the unit of the information entropy will be one bit. Sometimes we will writeH(p1, . . . , pn) instead of
H(X) if probabilities of values ofX arep1, . . . , pn.

Given two random variablesX andY , the mutual information between them, writtenI(X;Y), is
defined as follows:

I(X;Y) =
∑

x

∑

y

p(x, y). log
p(x, y)

p(x).p(y)
.

It can be easily shown thatI(X;Y) = H(X) +H(Y)−H(X,Y) = H(X)−H(X|Y) = H(Y)−
H(Y |X).

8 D.P. Gruska / Quantifying Security for Timed Process Algebras

Conditional entropy ofX given knowledge ofY is defined as follows:

H(X|Y) =
∑

y

p(y).H(X|Y = y),

and conditional mutual information betweenX andY given knowledge ofZ is defined as follows:

I(X;Y |Z) = H(Y |Z) −H(Y |X,Z).

3.4. Surprisal and uncertainty of security properties

First we express quantification of an amount of information flow by means of the simplest concepts and
later we develop more elaborated ones. LetO be an observation function andφ be a predicate over
traces. Leto ∈ Actt⋆. We denoteMTr(P)O=o = {s|s ∈ MTr(P),O(s) = o} andMTr(P)O=o

φ =
{s|s ∈ MTr(P), φ(s) ∧ (O(s) = o)}. We define

p(MTr(P)oφ) = |MTr(P)O=o
φ |/|MTr(P)O=o|.

Definition 3.4. We define surprisalH(PO=o
φ) of φ for processP and observationo, o 6= ǫ as

H(PO=o
φ) = log

1

p(MTr(P)O=o
φ)

.

Example 3.6. For processesP1 = h.c.Nil, P2 = h.c.Nil + τ.c.Nil, P3 = h.c.Nil + h.c.Nil +
h.c.Nil + h.c.Nil + τ.c.Nil P4 = h.c.Nil + τ.c.Nil + τ.c.Nil + τ.c.Nil + τ.c.Nil, O(h) = O(τ) =
ǫ,O(c) = c and predicateφ such thatφ(s) holds iff s contains actionh. We haveH(PO=c

1φ) = 0,

H(PO=c
2φ) = 1, H(PO=c

3φ) = log(5/4) = 0.32, H(PO=c
4φ) = log(5) = 2.32.

Example 3.7. Let us consider processP = τ.t.t.c.Nil + h.t.c.Nil and letO(h) = O(τ) = τ , O(t) =
t,O(c) = c andφ(s) iff s containsh. It is easy to see thatH(PO=c

φ) = 0. Now let us consider another
observer which cannot see elapsing of time shorter than 2 time units which can be easily modeled by a
dynamic observation function. For such the observer we haveH(PO=c

φ) = 1.

As it is stated in the following theorem there is a correspondence between a value ofH(PO=o
φ) and

predicate opacity and so surprisal can be seen as a quantification of opacity.

Theorem 3.2. P ∈ Opφ
O iff H(PO=o

φ) > 0 for everyo such thatO(o) 6= ǫ.

Proof:
Let P ∈ Opφ

O and letw ∈ Tr(P) such thatφ(w) andO(w) = o, o 6= ǫ. Then there existsw′,
w′ ∈ Tr(P) such that¬φ(w′) andO(w) = O(w′). From this we havep(MTr(P)O=o

φ) < 1 i.e.

H(PO=o
φ) > 0.

LetH(PO=o
φ) > 0 for everyo such thatO(o) 6= ǫ. an letw ∈ Tr(P) such thatφ(w) andO(w) = o.

SinceH(PO=o
φ) > 0 we have thatp(MTr(P)O=o

φ) < 1 i.e. there existsw′, w′ ∈ Tr(P) such that

¬φ(w′) andO(w) = O(w′) i.e. P ∈ Opφ
O. ⊓⊔

D.P. Gruska / Quantifying Security for Timed Process Algebras 9

So if H(PO=o
φ) = 0 then from observationo we have certainty that for corresponding trace(s) ofP

predicateφ holds. IfH(PO=o
φ) ≥ 1 then it is equally or more probable thatφ does not hold than it holds.

For processes we have the following compositionality property.

Theorem 3.3. LetH(PO=o
φ) = e1, H(QO=o

φ) = e2 then

min{e1, e2} ≤ H((P + Q)O=o
φ) ≤ max{e1, e2}.

Proof:
Let |MTr(P)O=o

φ | = n1, |MTr(P)O=o| = m1 and|MTr(Q)O=o
φ | = n2, |MTr(Q)o| = m2. Without

loss of generality we can assume thate1 ≤ e2 i.e. n1/m1 ≤ n2/m2. From that we getn1.m2 ≤ n2.m1.
We have that|MTr(P + Q)O=o

φ | = n1 + n2 and |MTr(P + Q)O=o| = m1 + m2 and son1/m1 ≤
(n1 + n2)/(m1 + m2) ≤ n2/m2. ⊓⊔

Many security properties, including SNNI, are based on the following idea. The system is considered
to be secure if an attacker cannot learn by observing its behaviour whether some private activity was
performed. This property can be easily expressed by opacityand by a special type of predicate over
processes traces. Such predicate is valid if the trace contain some private activity form a setH of private
activities. We will call such predicate set defined. The formal definition follows.

Definition 3.5. Predicateφ overActt⋆ will be called set defined if there exists a setH,H ⊂ Actt such
thatφ(s) iff there existsh, h ∈ H such thats = x1.h.x2 for x1, x2 ∈ Actt⋆.

For the set defined predicates we have the following simple compositional property. The proof is
straightforward.

Theorem 3.4. Let φ be a set defined predicate and letH(P o
φ) = e. ThenH(x.P o

φ) = e if ¬φ(x) and
H(x.P o

φ) = 0 if φ(x).

There is no correlation between length of observation and the resulting surprisal. See the following
theorem.

Theorem 3.5. There exist processP andP ′ and observationso, o′ such thato is the prefix ofo′, i.e.
o′ = o.s for somes, such thatH(PO=o

φ) < H(PO=o′

φ) andH(P ′O=o′

φ) < H(P ′O=o
φ).

Proof:
P = τ.c.d.Nil + h.c.(d.Nil + d.Nil), P ′ = τ.c.(d.Nil + d.Nil) + h.c.d.Nil andO(h) = O(τ) =
ǫ,O(c) = c,O(d) = d, o = c, o′ = c.d. ⊓⊔

The definition of opacity (see Definition 3.2) of predicateφ is asymmetric in the sense that ifφ(w)

does not hold than it is not required that there exist anothertrace for which it holds (in generalOpφ
O 6=

Op¬φ
O). This means that opacity says something to an intruder which tries to detect only validity ofφ (if

it is opaque, than validity cannot be detected) but not its non-validity i.e. it says nothing about predicate
¬φ.

To overcome this disadvantage we introduce a measure of uncertainty ofφ under observationo. The
uncertainty expresses an amount of information which can belearned by attacker about predicateφ.

10 D.P. Gruska / Quantifying Security for Timed Process Algebras

Definition 3.6. We define uncertaintyHu(PO=o
φ) of φ for processP and observationo, o 6= ǫ as

Hu(PO=o
φ) = p(MTr(P)O=o

φ). log 1
p(MTr(P)O=o

φ
)
+ (1 − p(MTr(P)O=o

φ)). log 1
1−p(MTr(P)O=o

φ
)
.

The uncertainty expresses how uncertain is predicateφ under observationo. It reaches maximal
value (equal to 1) when probabilities thatφ holds and thatφ does not hold are equal. It reaches minimal
value (equal to 0) it validity ofφ or ¬φ is certain.

The uncertainty has a similar relationship to opacity as thesuprisal (see Theorem 3.2). Also the proof
is similar.

Theorem 3.6. If P ∈ Opφ
O thanHu(PO=o

φ) > 0 for everyo such thatO(o) 6= ǫ.

The inverse implication in Theorem 3.6 does not hold but we have the following property. Its proof
is straightforward.

Theorem 3.7. If Hu(PO=o
φ) = 0 thenP 6∈ Opφ

O or P 6∈ Op¬φ
O .

Till now we have quantified an amount of information flow by means of surprisal and uncertainty
for a given observationo. But to get an appropriate quantification of security of processes we have to
limit a power of an attacker. First we start with a restriction on a length of observations the attacker
can performed. Lets ∈ Actt⋆. By |s|t we will denote the number of occurrences of actiont contained
in s. Note that every process can perform only finite number of actions different fromt between any
two actiont. Let us suppose that an attacker can observe process behavior for no longer that forn time
units. Then we putHu(Pn

φ) = min|o|t≤n Hu(PO=o
φ). Note that we know (see Theorem 3.5) that value of

Hu(PO=o
φ) does not need to be correlated with the length ofo. Moreover the value ofHu(Pn

φ) should be

related tolog |MTr(P)O=o|. If Hu(Pn
φ) = 0 then there exist an observationo which gives us certainty

about validity ofφ or ¬φ. On the other side we can ask about the minimaln such thatHu(Pn
φ) = 0 (if

suchn exits). For example, letP2 =
∑2k

i=1 hi.µX(
∑2k

j=0,j 6=i lj .t.X + li.t.l̄accepted.X), O(hi) = ǫ, for
all i, O(x) = x for other actions, and predicateφi such thatφi(s) holds iff s contains actionhi for some
giveni. For an attacker which can influence a performance of actionslj it takes at most2k time unites to
learn the private inputhi.

3.5. Mutual information flow

Non-Deducibility on Composition (NDC for short, see in [6])is a widely studied security property. It is
based on the idea of checking the system against all high level potential interactions, representing every
possible high level process. System is NDC if for every high level userA, the low level view of the
behaviour ofP is not modified (in terms of trace equivalence) by the presence of A. The idea of NDC
can be formulated as follows.

Definition 3.7. (NDC)P ∈ NDC iff for every A,Sort(A) ⊆ H ∪ {τ, t}

(P |A) \ H ≈w P \ H.

Now we will define a quantified variant of NDC. LetA be a finite subset ofActt∗, A 6= ∅. XA be a
corresponding discrete random variable with rangeA and uniform probability. LetP be a process and

D.P. Gruska / Quantifying Security for Timed Process Algebras 11

let YP be a random variable which ranges over
⋃

s∈A MTr((P |s)\H)) with uniform probability (string
s is considered to be processs.Nil).

We define the mutual information betweenXA andYP as follows:

F(A ; P) = I(XA, YP).

We illustrate mutual information by the following example.Note that if two variables are independent
then mutual information is equal to zero.

Example 3.8. Let P = h.c.Nil + d.Nil, A = {ǫ, h̄}. We have thatF(A ; P) = H(XA) + H(YP)−
H(XA, YP) = 1 + 1 − 1, 58 = 0,42.

Again mutual information can be viewed as a quantification ofNDC as it is stated by the following
theorem.

Theorem 3.8. Let P 6∈ NDC then there existsA such thatF(A ; P) > 0.

Proof:

Let P 6∈ NDC. That means that there exists processH ands ∈ Tr((P |H) \ H such thats 6∈
Tr(P \H). Leth1.hn is a sequence of actions which participates ons and are performed byH. For
the rest of the proof we choseA = {ǫ, h1.hn}. Clearly we haveF(A ; P) > 0. ⊓⊔

Also an inverse of the previous theorem holds.

Theorem 3.9. Let for everyA, A ⊂ Actt∗, A 6= ∅ we haveF(A ; P) > 0 for someP . Then
P 6∈ NDC.

3.6. Conditional mutual information flow

Now suppose that we are interested not only whether some private action was performed (see Definition
3.3) but also which one was performed. It can be modeled by opacity considering predicatesφa such
thatφa(s) is valid if s contains private actiona. Here we offer an alternative approach which can exploit
an additional knowledge which might have an attacker at disposal.

We will assume that processP receives some private input from the set{h1, . . . , hn}, some public
input from the set{l1, . . . , lm} and produces an output from the set{l̄1, . . . , l̄k}. (Note that this assump-
tion could be naturally generalized to several inputs/outputs.) The process can perform also other actions
but those are out of interest.

Suppose that distributions of possible private and public inputs and the resulting distribution of a
corresponding public output are given by discrete random variablesHin, Lin andLout, respectively.

Following an approach advocated in [4] define conditional mutual information flow (FP (H ; L))
between private inputs and public outputs, knowing public inputs. It expresses an amount of information
on private inputs which can be learned by attacker who can seepublic inputs and outputs. If there is no
information flow between private inputs and public outputs (knowing public inputs) then this conditional
mutual information is equal to zero, i.e. public and privatedata are independent and attacker can learn
nothing.

12 D.P. Gruska / Quantifying Security for Timed Process Algebras

Definition 3.8.
FP (H ; L) = I(Hin, Lout|Lin)

Note that for system in which the output (Lout) is uniquely given by the inputsHin, Lin (it means
that the system is deterministic with respect to these inputs and that the output does not depend on any
other inputs) then we have thatFP (H ; L) = I(Hin, Lout|Lin) = H(Lout|Lin) (see [4]).

Example 3.9. Let us considerP1 =
∑2k

i=1 hi.(
∑2k

j=1,j 6=i lj.l̄refused + li.l̄accepted) and suppose that pass-
words (actionshi) are distributed with uniform probability. So the same holds for attacker’s guesses.

Then we haveFP1
(H ; L) = H(Lout|Lin) =

∑2k

i=0 p(li).H(Lout|Lin = li) what is roughlyk/2k.
So an amount of information flow is rather low for a bigger value of k. Now suppose that the password
is more likely (say, with probability210 times higher) to be a word from a dictionary of size2n, n < k
(dictionary attack). Then we haveFP1

(H ; L) = H(Lout|Lin) = (2k − 2n).(1/p).H(1/p, 1 − 1/p) +
2(n+10)/p.H(210/p, 1 − 210/p), for p = 1/(2n.(210 − 1) + 2k). In this case the amount of information
flow is rather high forn ≪ k.

The concept mutual information flow is different from the previous ones and cannot be directly
compared with them. Here, in fact, we consider only processes which do not belong to SNNI so we
cannot expect results similar to Theorem 3.6 and 3.7.

Restriction to just one input sent through a private channeland one input sent through a public chan-
nel and one output sent through a public channel might be too restrictive. Let discrete random variables
H i

in, Lj
in and Lk

out correspond toi, j and k inputs/outputs, respectively. Then we define conditional
mutual information flow as follows:

Fu
P (H ; L) = max

i,j,k
I(H i

in, Lj
out|L

k
in).

Now we can ask whetherP is insecure (or secure) knowing value ofFu
P (H ; L). If Fu

P (H ; L) =
0 we know that public outputs and private inputs (knowing public inputs) are independent variables
and hence the process could be considered secure. On the other side, let us consider two processes

P1 =
∑2k

i=1 hi.(
∑2k

j=1,j 6=i lj .l̄refused + li.l̄accepted) and its recursive version

P2 =
∑2k

i=1 hi.µX(
∑2k

j=1,j 6=i lj.l̄refused.X+ li.l̄accepted.X).
Clearly we haveFP1

(H ; L) = FP2
(H ; L) but P2 is less secure because the an attacker can try to

guess a password infinitely many times.
Now let us consider process

P3 = τ.(
∑2k

i=1 hi.(
∑2k

j=1 lj .(
∑2k

j=1 l̄j)))+ τ.(
∑2k

i=1 hi.(
∑2k

j=1 lj .l̄((i+j) mod2k))). It consists of two
subprocesses. The first one produces a random outputlj and the second one produces an output fully
determinated by the inputs. The both subprocesses are prefixed byτ actions which might represent a lack
of knowledge of system behaviour. But it might be that there is a way how to force the process to chose
the second subprocess which gives full information on the private inputs to an attacker. We propose a
solution to above mentioned situations: first we realistically limit a maximal length of observations (to
maximum ofn time units), and then we encode every computational paths bysequencesp, p ∈ {0, 1, 2}⋆

and put
Fs

P (H ; L) = max
0≤|p|t≤n

FPp(H ; L)

D.P. Gruska / Quantifying Security for Timed Process Algebras 13

whereFPp(H ; L) denotes the information flow for processP and its computational pathp and by|p|t
we denote length of a trace corresponding to computational pathp. In this way we obtain a more realistic
quantification of process security than it is given just byFP (H ; L).

3.7. Unprecise observations

Let as assume that on observer cannot observe time of action occurrences with an absolute precision.
That means that a possible outcome of an observation function might be not just a single observation but
a set of different observations. Each element of the set represents a possible observation. We can model
this kind of observations directly with observation functions (see Definition 3.1) but instead of that we
generalize definition of observational functions. We will consider functionsO : Actt⋆ → 2Θ⋆

. If O(w)
is always a singleton that we get the previous concept of observational functions. We assume that for
everyw,w ∈ Actt⋆ we have thato1|Act = o2|Act (i.e. o1, o2 restricted to actions fromAct are equal)
for everyo1, o2 ∈ O(w). That means that members ofO(w) differ only in timing of actions. We now
modify the definition of opacity.

Definition 3.9. (Unprecise Opacity)
Given processP , a predicateφ over Actt⋆ is unprecise opaque w.r.t. the observation functionO if
for every sequencew, w ∈ Tr(P) such thatφ(w) holds andO(w) 6= {ǫ}, there exists a sequence
w′, w′ ∈ Tr(P) such that¬φ(w′) holds andO(w) ∩ O(w′) 6= ∅. The set of processes for which the
predicateφ is unprecise opaque with respect toO will be denoted byuOpφ

O.

Example 3.10. Let as consider process
P = c.t.t.t.h.c.Nil + c.t.τ.c.Nil, O(c.t.t.t.h.c) = {c.t.t.t.t.τ.c, c.t.t.t.τ.c, c.t.t.τ.c, c.t.τ.c} and
O(c.t.τ.c) = {c.t.t.τ.c, c.t.τ.c, c.τ.c} and predicateφ such thatφ(s) iff s contains actionh. Clearly
P ∈ uOpφ

O but forP 6∈ Opφ
O′ for precise observation which only hidesh action.

We have to modify accordingly definitions ofMTr(P)O=o so we will haveMTr(P)O=o = {s|s ∈
MTr(P), o ∈ O(s)}. Corresponding definitions for quantified information flow under unprecise obser-
vations are the same as for the case of precise observations.In this way we obtain more realistic security
properties with respect to so called timing attacks which are based on timing information on systems
behaviour. Many system, which are in theory opened to that type of attacks, are reasonable safe if an
attacker capability to observe precisely elapsing of time is limited. Hence in that case there is no need
to modify such systems by, for example, adding random delaysbetween some actions, to obtain their
security.

With this technique we could define also other kinds of unprecise observations not only those ones
when elapsing of time cannot be observed with absolute precision. For example, we can model observers
who sometimes cannot precisely distinguish some actions particularly if many actions are performed
between two time unites and so on.

4. Discussion and future work

We have developed the concept of quantified information flow in timed process algebras for different
settings. For the sake of simplicity we have used a timed process algebra instead of a probabilistic timed

14 D.P. Gruska / Quantifying Security for Timed Process Algebras

process algebra (depending on an application one can chose between reactive, generative or stratified
probabilistic calculi, see [8]). Using that kind of algebras we could have more adequate tools for ex-
pressing probabilities of traces. Instead of that we have used uniform probability distribution but all
the concepts and results could be easily translated to a probabilistic calculus. Actually we would have
different definitions ofp(MTr(P)oφ) which appears in Definition 3.4 and 3.6 of surprisal and uncertainty.

In the case of mutual information flow (F(A ; P)) we could associate probabilities also with
elements of setA (i.e. XA could have also other than uniform probability distribution) and withYP in
I(XA, YP).

In the case of the unprecise observations, we could generalize this concept as follows. We could
permit that the observations can be unprecise not only with respect to elapsing of time but they could
be unprecise in general. We can model this by observational functions which map every trace of actions
to a discrete random variable which ranges over strings fromΘ⋆. Moreover we can associate some
probability distribution to resulting possible observations for a given ”unprecise” observer. For example,
we can model Gaussian (or any other) distribution of errors for different kinds of observation etc.

As regards the future work, besides considering probabilistic process algebra, we plan to investigate
changes of a level of security of processP by putting it to different contexts and by composing it with
other processes.

References

[1] Bryans J., M. Koutny and P. Ryan: Modelling non-deducibility using Petri Nets. Proc. of the 2nd Interna-
tional Workshop on Security Issues with Petri Nets and otherComputational Models, 2004.

[2] Bryans J., M. Koutny, L. Mazare and P. Ryan: Opacity Generalised to Transition Systems. In Proceedings
of the Formal Aspects in Security and Trust, LNCS 3866, Springer, Berlin, 2006

[3] Busi N. and R. Gorrieri: Positive Non-interference in Elementary and Trace Nets. Proc. of Application and
Theory of Petri Nets 2004, LNCS 3099, Springer, Berlin, 2004.

[4] Clark D., S. Hunt and P. Malacaria: A Static Analysis for Quantifying the Information Flow in a Simple
Imperative Programming Language. The Journal of Computer Security, 15(3). 2007.

[5] Focardi, R., R. Gorrieri, and F. Martinelli: Information flow analysis in a discrete-time process algebra.
Proc. 13th Computer Security Foundation Workshop, IEEE Computer Society Press, 2000.

[6] Focardi, R., R. Gorrieri, and F. Martinelli: Real-Time information flow analysis. IEEE Journal on Selected
Areas in Communications 21 (2003).

[7] Focardi, R. and S. Rossi: Information flow security in Dynamic Contexts. Proc. of the IEEE Computer
Security Foundations Workshop, 307-319, IEEE Computer Society Press, 2002.

[8] Glabbeek R. J. van, S. A. Smolka and B. Steffen: Reactive,Generative and Stratified Models of Probabilistic
Processes Inf. Comput. 121(1): 59-80, 1995

[9] Gorrieri R. and F. Martinelli: A simple framework for real-time cryptographic protocol analysis with com-
positional proof rules. Science of Computer Programming archive Volume 50, Issue 1-3, 2004.

[10] Gruska D.P.: Probabilistic information flow security.Fundamenta Informaticae, Vol. 85, No. 1-4, 2008.

[11] Gruska D.P.: Observation Based System Security. Fundamenta Informaticae, vol 79, Numbers 3-4, 2007.

[12] Gruska D.P.: Information-Flow Attacks Based on Limited Observations. in Proc. of PSI’06, Springer Ver-
lag, LNCS 4378, Berlin, 2007.

D.P. Gruska / Quantifying Security for Timed Process Algebras 15

[13] Gruska D.P.: Information-Flow Security for Restricted Attackers. in Proc. of 8th International Symposium
on Systems and Information Security, Sao Jose dos Campos, 2006

[14] Gruska D.P.: Information Flow in Timing Attacks. Proceedings CS&P’04, 2004.

[15] Lowe G.: Quantifying information flow”. In Proc. IEEE Computer Security Foundations Workshop, 2002.

[16] Segala R. and N. Lynch: Probabilistic Simulations for Probabilistic Processes. Nord. J. Comput. 2(2): 250-
273, 1995

[17] Shannon, C. E.: A mathematical theory of communication. Bell System Technical Journal, vol. 27, 1948.

