Fundamenta Informaticae 93 (2009) 1-15 1
DOI 10.3233/FI-2009-86
10S Press

Quantifying Security for Timed Process Algebras

Damas P. Gruskd

Institute of Informatics, Comenius University
Mlynska dolina, 842 48 Bratislava, Slovakia
gruska@fmph.uniba.sk.

Abstract. A quantification of process’s security by quantification nfaanount of information flow

is defined and studied in the framework of timed process aégeflhe resulting quantified security
is compared with other (qualitative) security notions. thgise and limited observations are defined
and discussed.

Keywords: information flow, information theory, opacity, surprisahcertainty, security, unprecise
and limited observations

1. Introduction

The aim of this paper is to quantify an amount of informatiawflin the framework of timed process
algebras. To express the information flow we will use obgem&unctions and opacity. The observa-
tion functions express what an intruder can observe frotesysbehaviour. They can hide some system
activities (for example, internal actions, communicasiaiia encrypted channels, actions hidden by a
firewall etc) or they can express unprecise observationgviiich an outcome of an observation is not
precisely given i.e. the outcome might be a set of possildelteor a random variable. The information
flow will be expressed by opacity. It is a qualitative proge/ predicate is opaque if from observation
of system activities an observer cannot deduce whetheréutgate holds or it does not hold. For many
applications this property is too restrictive. Predicdf@®perties) which are not opaque are considered
to be insecure since an intruder can detect validity of tleglipates by observing system behavior. On

“Work supported by European Science Foundation programMattoA.
fAddress for correspondence: Institute of Informatics, €pius University, Mlynska dolina, 842 48 Bratislava, Skiga

2 D.P. Gruska/Quantifying Security for Timed Process Algsbr

the other side they are considered to be insecure also irateethat predicates validity can be deduced
form observations only with a very low probability or suchddetions require an unrealistic number
of observations (for example, usually access control g exhibit some information flow showing
which password is not correct but they are still consideoelet secure under reasonable password pol-
icy). Hence there is a need to quantify an amount of inforomafiow which can be gained from the
observations. For this we use Shannon’s information thedrgh enable us to quantify an amount of
information which could be obtained about validity of giveredicatep and later an amount of direct
information flow between processes’s inputs and outputs. wilfeuse concepts asurprisal, uncer-
tainty, mutual information, conditional mutual informaiti and prove some of security properties based
on them. Some comparison with qualitative security notiomawn in the literature will be presented.
Later we will study the case when an observer cannot prgceunlimitedly long observe systems
behavior and the case when information flows are not basegacitg but are based on a conditional
mutual information between private and public inputs/atgp

As regards quantifying information flow there is a number apgrs devoted to its analysis in the
framework of imperative languages (see [4] for an overvielw)[15] an information flow is studied in
the framework of process algebras. Particularly, it is stigated how much information i.e. a number
of bits can be transmitted by observing some timed systeivitaest. Here we start with a quantification
of opacity (opacity was introduced in [1, 2]). Opacity is ygeneral notion and many security prop-
erties can be viewed as special cases of opacity (see forpyxdfrl], where it was proved that many
security properties defined for process algebras can beasespecial cases of opacity and moreover
other, stronger security properties can be defined by mdapsaoity). A weaker form of "probabilistic”
opacity developed in the framework of probabilistic timedqess algebra has been studied in [10]. The
model in which an observer could observe time elapsing Etweo actions only with limited precision
or during a limited time window is studied in [12, 13]. In tlegsapers security properties are considered
to be qualitative but capabilities of an intruder have someangjtative aspects but his observations are
still precise what represents a different approach thastudied here.

In this paper we will work with the timed process algebraeast of a probabilistic timed process
algebra. This decision was taken for the sake of simplicity dl definitions can be easily translated
to probabilistic setting (see a discussion in the last settind hence the notions we developed could
be applied for any type of probabilistic process algebra.il®\in [10] a special probabilistic process
algebra was chosen as a basic formalism and we measuredititglvaith which an attacker can learn
validity of a predicate over processes traces, here we ifyam amount of information about validity
of such predicate which can be gained by attacker who camabpeocesses traces. We quantify also
an amount of information about private inputs which can beeghby an attacker which can see public
inputs and outputs.

The paper is organized as follows. In Section 2 we describditied process algebra TPA which
will be used as a basic formalism. In Section 3 we present mrebiigate quantified information flow
for different observation functions and security requiesits. We introduce surprisal and uncertainty of
security properties which could be expressed by means dfgattes over system activities and mutual
information flow between system (private/public) inputsl §public) outputs, respectively.

D.P. Gruska/Quantifying Security for Timed Process Algsbr 3

2. Timed Process Algebra

In this section we define Timed Process Algebra, TPA for sHdPA is based on Milner's CCS but the
special time actiort which expresses elapsing of (discrete) time is added. Tosepted language is
a slight simplification of Timed Security Process Algebraaduced in [5]. We omit an explicit idling
operator, used in tSPA and instead of this we allow implicit idling ofopesses. Hence processes
can perform either "enforced idling” by performingactions which are explicitly expressed in their
descriptions or "voluntary idling”. But in the both caseteimal communications have priority to action
t in the case of the parallel operator. Moreover we do not digctions into private and public ones as it
is in tSPA. TPA differs also from the tCryptoSPA (see [9]).ATtes not use value passing and strictly
preservegime determinacyn case of choice operatar what is not the case of tCryptoSPA.

To define the language TPA, we first assume a set of atomigastimbolsA not containing symbols
7 andt, and such that for every € A there exist& € A anda = a. We definedct = AU {7}, Actt =
ActU{t}. We assume that, b, ... range ovet4, u,v, ... range overAct, andx,y ... range overActt.
Assume the signatur® = (J,,¢ 1,2y n, Where

S = {Nil}

Y1 = {xz. |z e AU{t}} U{[S]| Sis arelabeling functioh
U{\M | M C A}

Yy = {[,+}

with the agreement to write unary action operators in prefirif the unary operatofs], \ M in postfix
form, and the rest of operators in infix form. Relabeling fumes, S : Actt — Actt are such that
S(a) = S(a)fora e A,S(r) =7 andS(t) =t.

The set of TPA terms over the signatitdas defined by the following BNF notation:

P =X | op(P,P,...P,) | pXP

whereX € Var, Var is a set of process variableB, P, ... P, are TPA termsu X — is the binding
constructop € ..

The set of CCS terms consists of TPA terms withoaiction. We will use an usual definition of
opened and closed terms whet® is the only binding operator. Closed terms which are t-gedi@ach
occurrence ofX is within some subexpressiam i.e. between any twoactions only finitely many non
timed actions can be performed) are called TPA processete tRat Nil will be often omitted from
processes descriptions and hence, for example, instead. 6fil we will write justa.b.

We give a structural operational semantics of terms by mehlabeled transition systems. The set
of terms represents a set of states, labels are actionsArdtn The transition relation- is a subset of
TPA x Actt x TPA. We writeP % P’ instead of(P, z, P') € — and P 2 if there is noP’ such that
P = P'. The meaning of the expressidh — P’ is that the termP can evolve taP’ by performing
actionz, by P = we will denote that there exists a tetRi such thatP = P’. We define the transition

4 D.P. Gruska/Quantifying Security for Timed Process Algsbr

relation as the least relation satisfying the inferencestibr CCS plus the following inference rules:

— Al — A2
Nil = Nil u.P = u.P
PLPQ-Q.PIQL . PLP.QEQ
a
PlQLP|Q P+QL P +Q

Here we mention the rules that are new with respect to CCSAsid1, A2 allow arbitrary idling.
Concurrent processes can idle only if there is no possitifitan internal communicationfa). A run
of time is deterministic.§). Regarding behavioral relations we will work with the tidheersion of weak
trace equivalence. Note that here we will use also a condepibservations which contain complete
information which includes also actions and not just actions from and¢ action as it is in [5]. For
s = T1.29..... Ty, x; € Actt we write P > instead ofP 353 ... ¥3 and we say that is a trace of
P. The set of all traces aP will be denoted byl'r(P). We will write P = P’ iff P(5)* % (5)*P!
andP = instead ofP 22 ... 2. By ¢ we will denote the empty sequence of actions,Say:c(P)
we will denote the set of all successorsandSort(P) = {xz|P >% for somes € Actt*}. If the set

Suce(P) is finite we say thaf is finite state.

Definition 2.1. The set of weak timed traces of proce3ss defined as
Tro(P) = {s € (AU {t})*|3P".P = P'}. Two processP and(Q are weakly timed trace equivalent
(P Ruw Q) iff Trw(P) = TTw(Q)'

3. Information Flow

To formalize an information flow we do not divide actions imtablic and private ones at the system
description level, as it is done for example in [9, 3], but vée @ more general concept of observation
and opacity. This concept was recently exploited in [1] &]jd a framework of Petri Nets and transition
systems, respectively.

First we define observation function on sequences frait*.

Definition 3.1. (Observation)

Let © be a set of elements called observables. Any funaflanActt* — ©* is an observation function.
It is called static /dynamic /orwellian / m-orwelligm: > 1) if the following conditions hold respectively
(below we assume = z1 ... x,):

e static if there is a mappin@’ : Actt — © U {e} such that for everyw € Actt* it holds O(w) =
O'(z1)...0 (zn),

e dynamic if there is a mappin@’ : Actt* — © U {e} such that for everyv € Actt* it holds
O(w) = (’)’(xl).O’(wl.xg) e (’)’(acl e xn),

e orwellian if there is a mapping’ : Actt x Actt* — © U {e} such that for everyv € Actt* it
holdsO(w) = O'(z1,w).O0' (z2,w) ... O (zy,w),

D.P. Gruska/Quantifying Security for Timed Process Algsbr 5

e m-orwellian if there is a mappin@’ : Actt x Actt* — © U {e} such that for everyw € Actt*
it holds O(w) = O'(z1,w1).0' (2, w3) ... O (xy, w,) Where

Wi = Tmaz{l,i—m+1}-Tmaz{l,i—m+1}+1 - - - Tmin{n,i+m—1}-

In the case of the static observation function each actiobserved independently from its context.
In the case of the dynamic observation function an obsenvaif an action depends on the previous
ones, in the case of the orwellian and m-orwellian obsesamatunction an observation of an action
depends on the all and an previous actions in the sequence, respectively. The shaservation
function is the special case of m-orwellian one for= 1. Note that from the practical point of view
the m-orwellian observation functions are the most inteargsones. An observation expresses what an
observer - eavesdropper can see from a system behaviour emdlvalternatively use both the terms
(observation - observer) with the same meaning.

3.1. Opacity

Now suppose that we have some security property. This mighinkexecution of one or more classified
actions, an execution of actions in a particular classifrel@iowhich should be kept hidden, etc. Suppose
that this property is expressed by predicatever process traces. We would like to know whether an
observer can deduce the validity of the propeftjust by observing sequences of actions fraktt*
performed by given process.

The observer cannot deduce the validity @fif there are two tracesv,w’ € Actt* such that
#(w), ~¢(w’) and the traces cannot be distinguished by the observe? (=) = O(w'). We formalize
this concept by opacity.

Definition 3.2. (Opacity)

Given processP, a predicatep over Actt* is opaque w.r.t. the observation functidn if for every
sequencev, w € Tr(P) such thatp(w) holds andO(w) # e, there exists a sequenag, w’ € Tr(P)

such that~¢(w') holds andO(w) = O(w'). The set of processes for which the predicatie opaque
with respect taD will be denoted b)Op(é.

The notion of opacity is rather general. With its help manyeotsecurity properties can be defined
(anonymity, non-interference etc. see [2]). On the othd#,sbpacity is undecidable even for the simplest
possible observation function, namely for the constant and for finite state processes (see [14]).

Example 3.1. Let O : Actt — Actt U {€} such thatO(a) = O(b) = ¢,0(r) = 7 and letP =
((b.t.c+a.c)|c) \ {c}. Letg1(s) if s containsb andes(s) if s containsa. Then the observer given &9
can detect occurrence of the actioibut notb i.e. P € Op‘é1 but P ¢ Op(é since from observing just
action (without any delay) it is clear that actiarwas performed. O

Example 3.2. Let P = h.Nil andO(h) = €. Clearly P € Op‘é for any ¢ since P cannot perform any
sequence of actions such tl@(s) # e. O

In[11] Op(é property is compared with Strong Nondeterministic Noretfgrence (SNNI, for short).
We recall its definition (see [5]). Suppose that all actioresdivided in two groups, namely public (low
level) actionsL and private (high level) actiond i.e. A = LUH, LN H = (). Then proces# has SNNI

6 D.P. Gruska/Quantifying Security for Timed Process Algsbr

property if P\ H behaves likeP for which all high level actions are hidden for an observereXpress
this hiding we introduce hiding= operatdt/M, M C A, for which if P % P’ thenP/M % P'/M
whenever ¢ M U M andP/M = P'/M whenever € M U M. Formal definition of SNNI follows.

Definition 3.3. Let P € TPA. ThenP € SNNIiff P\ H ~,, P/H.

Now we can comparéJIFg and SN N properties. Clearly, the former one is more general (see

[11]).

Theorem 3.1. P €« SNNIiff P € Op% forO(h) = O(1) =€, h € H, O(x) = z,x € L and¢(s) iff
s contains an element froif .

Note that byOp% we can model situations which cannot be described by SNNIekample, the
definition of SNNI expects that everything what cannot beeolrd is private. So it cannot model
situations when we do not see some actions and we are naéstedrin their occurrences at all (see
examples from the beginning of the next subsection).

3.2. Quantifying opacity

Opacity, as it is defined in Definition 3.2, is frequently icited from the both side - as a qualitative
property it might happen that sometimes it is too weak orithather cases it can be too strong.

Example 3.3. Let us consider procesd, = Z?il hi.(Zil,#i Uilrefused + lilaceepted) O(hi) = €,
for all i, O(xz) = « for other actions, and predicatg such thatp;(s) holds iff s contains actiorh; for
some given. Clearly P, ¢ Op?)i since an occurrence of actidén is not "hidden” by any other action
and so by observing.[accepted we have certainty thdt; has been performed. B#;, which represents a
simple access control process, is considered to be sedui®lifg enough. Soin this case for sufficiently

big & opacity looks like to be too strong security property. Ondtieer side if we considep, = —¢; we

have againP; ¢ Op% but validity of ¢} is much more likely under observatiéni,.. fused and security
of P, with respect tap; is in this case much more lower.

Example 3.4. Let us consider proces§ = Zie{o 1} hii-hoji. h(k_l)i.(ln + hy;.T) wheren =
Zle hj;.2771. Let us suppose tha®(h;;) = e, for all j,i andO(z) = z for the other actions and
on(s), for 2(k—=1) < n < 2k is true iff theh actions contained ia represent binary notation of (see
definition ofl,,). Clearly@ € Op%” but an attacker can learn all bits of say of a long private key,
except of the last one. Such system is usually not considerkbd secure since the space of all possible
keys of size2* can be reduced to only two possibilities and hence the jgrikay can be, in practice,
discovered.

Example 3.5. Now let us consider procedd = Efil hi.uX(Zik:'L#i UiDre fused- X+ li-loceepted-X)-

If an attacker can observe this process for an unlimited &ingecan influence public datathan (s)he
can learn validity of for any k& with absolute certainty. But under limited length of obsgions process
P; can be still considered to be secure kdveing big enough.

D.P. Gruska/Quantifying Security for Timed Process Algsbr 7

To overcame an insufficiency of (qualitative) opacity ithased in the previous examples we will
define quantitative measure of opacity. To do so we need soepatory work. The multiset of finite
traces ofP will be denoted byMT'r(P). For example, the trace.b is contained inM/T'r(a.bNil +
a.b.c.Nil) two times. There exist a few techniques how to define thisisailtoriginally developed for
probabilistic process algebras (but here we will assumeath@aequences have the same probability).
For example, in [16] a technique of schedulers are used tveeshe nondeterminism and in [8] all
transitions are indexed and hence pathes can be distimglishdifferent indexes. In the former case,
every scheduler defines (schedules) a particular compntatth and hence two different schedulers
determine different pathes, in the later case, the indexrdscwhich transition was chosen in the case
of several possibilities. The set of indexes for procgssonsists of sequences. .. i, wherei; €
{0,1,2} U {0,1,2} x {0,1,2} . Anindex records how a computation pathfcould be derived, i.e.
it records which process was chosen in case of nondeteminfghere is only one possible successor
then transitions are indexed hy(i.e. corresponding; = 1) If transition P = P’ is indexed byk (i.e.
corresponding; = k) then transition? + Q — P’ is indexed byk.1 and transitionQ + P = P’
is indexed byk.2. If transitonsP = P’ andQ = @' are indexed byt and !, respectively, then
transitions ofP|@ have indexes fron{(k,0), (0,1), (k,1)} depending on which transition rule for the
parallel composition was applied. Every index defines attrmios trace and the set of all indexes defines
the multisets of trace3/T'r(P).

3.3. Information theory

To express quantity of information flow we will exploit Schmeom information theory (see [17]). L&t
be a discrete random variable anddatanges over the set of values whig&hmay take. Byp(z) we will
denote probability thak takes the value.

Self-information (or surprisal) is a measure of the infotiora content associated with the outcome
of the random variabl&. It is defined as the following:

H(z) = logy, Iﬁ

We putH(z) = oo if p(z) = 0. The information entropy (also called self-informationaomeasure
of uncertainty) of the variabl& is denotedH (X) and is defined as the following:

Z bl 10gb)

We definep(x). log;, ﬁ = 0if p(z) = 0. We will work with the baseé of log, equal to 2 and hence

the unit of the information entropy will be one bit. Sometsnee will write H(p;, ..., py,) instead of
H(X) if probabilities of values ofX arep;, ..., p,.
Given two random variableX andY’, the mutual information between them, writté.X;Y"), is

defined as follows: (z.5)
b{z,y
= p(x,y).log ————.

2.2 pe - log e

It can be easily shown th@(X;Y) = H(X)+ H(Y) - H(X,Y) = H(X) - H(X|Y) =H(Y) —
H(Y|X).

8 D.P. Gruska/Quantifying Security for Timed Process Algsbr

Conditional entropy ofX given knowledge ol” is defined as follows:

H(X|Y) = Zp HX|Y =y),

and conditional mutual information betweghandY” given knowledge ot is defined as follows:
I(X;Y|Z)=H(Y|Z)-H(Y|X, Z).

3.4. Surprisal and uncertainty of security properties

First we express quantification of an amount of informatiowfby means of the simplest concepts and
later we develop more elaborated ones. {ebe an observation function angbe a predicate over
traces. Leb € Actt*. We denoteMTr(P)°=° = {s|s € MTr(P),O(s) = o} andMTr(P) =0 =
{s|s € MTr(P),¢(s) A (O(s) = 0)}. We define

p(MTr(P)3) = |MTr(P)g=°|/|MTr(P)9=°|.

Definition 3.4. We define surprisaH(szo) of ¢ for processP and observation, o # € as

H(P=) = log

p(MTr(P)9=7)

Example 3.6. For processes’, = h.c.Nil, P> = h.c.Nil + 7.c.Nil, P3 = h.c.Nil + h.c.Nil +
h.c.Nil + h.c.Nil + 7.c.Nil Py = h.c.Nil + 7.c.Nil + 7.c.Nil + 7.c.Nil + 17.c.Nil, O(h) = O(1) =
¢,0(c) = c and predicatey such thats(s) holds iff s contains actiomh. We haveH(sz):C) =0,
H(P5) =) = 1, H(P§)=) = log(5/4) = 0.32, H(P{;=°) = log(5) = 2.32.

Example 3.7. Let us consider proces = r.t.t.c.Nil + h.t.c.Nil and letO(h) = O(1) = 7, O(t) =
t,O(c) = candg(s) iff s containsh. It is easy to see thaﬂ(szc) = 0. Now let us consider another
observer which cannot see elapsing of time shorter than & tinits which can be easily modeled by a
dynamic observation function. For such the observer we hé(\léfzc) =1.

As it is stated in the following theorem there is a correspome between a value W(Pf:") and
predicate opacity and so surprisal can be seen as a quditificd opacity.

Theorem 3.2. P € Op?g iff H(Pf:(’) > 0 for everyo such thatO(o) # e.

Proof:
Let P ¢ Op% and letw € Tr(P) such thatp(w) and O(w) = o,0 # e. Then there exists/,
w’ € Tr(P) such that-¢(w') and O(w) = O(w’). From this we havq;(MTr(P) =) < lie.
H(P$=°) > 0.

LetH(szo) > 0 for everyo such thatO(o) # ¢. an letw € T'r(P) such thatp(w) andO(w) =
SinceH(Pf:(’) > 0 we have tha;o(MTr(P) =°) < 1i.e. there exista/’,w’ € Tr(P) such that

—¢(w') andO(w) = O(w') i.e. P € OpO. O

D.P. Gruska/Quantifying Security for Timed Process Algsbr 9

So ifH(szO) = 0 then from observation we have certainty that for corresponding trace(spof

predicatep holds. IfH(Pf:") > 1thenitis equally or more probable thatloes not hold than it holds.
For processes we have the following compositionality priype

Theorem 3.3. Let H(P5=°) = e1, H(Q$=°) = e, then
min{ey,ex} < H((P + Q)gzo) < max{er, ea}.

Proof:

Let |[MTr(P)5=°| = ny, [MTr(P)°=°| = my and|MTr(Q)§=°| = ng, |IMTr(Q)°| = my. Without
loss of generality we can assume that< es i.e. ny/m; < ng/mo. From that we get;.mo < ng.mj.
We have thatMTr(P + Q)g:°| = ny + ng and | MTr(P + Q)°=°| = my + my and sony /m; <
(n1 +n2)/(m1 + ma) < ng/ma. O

Many security properties, including SNNI, are based on#ftiewing idea. The system is considered
to be secure if an attacker cannot learn by observing itsvi@mrawhether some private activity was
performed. This property can be easily expressed by opaaitlyby a special type of predicate over
processes traces. Such predicate is valid if the traceiocstiene private activity form a séf of private
activities. We will call such predicate set defined. The fakaefinition follows.

Definition 3.5. Predicatep over Actt* will be called set defined if there exists a $6tH C Actt such
thato(s) iff there existsh, h € H such thats = z1.h.zy for x;, ze € Actt*.

For the set defined predicates we have the following simpihepositional property. The proof is
straightforward.

Theorem 3.4. Let ¢ be a set defined predicate and1étP;) = e. ThenH(z.FJ) = e if =¢(x) and
H(z.Pg) = 01if ¢(x).

There is no correlation between length of observation aaddhlulting surprisal. See the following
theorem.

Theorem 3.5. There exist proces® and P’ and observations, o’ such thato is the prefix ofo’, i.e.
o' = o.s for somes, such that{(P{=?) < H(P=") andH(P'=") < H(P/fzo).

Proof:
P = 1.c.d.Nil + h.c.(d.Nil + d.Nil), P' = 1.c.(d.Nil + d.Nil) + h.c.d.Nil andO(h) = O(7)
€,0(c) =¢,0(d) =d,o=c¢,d = cd.

ol

The definition of opacity (see Definition 3.2) of predicatés asymmetric in the sense thaigifw)
does not hold than it is not required that there exist andtiaee for which it holds (in generﬂp% #
Op5¢). This means that opacity says something to an intrudertwihies to detect only validity o (if
it is opaque, than validity cannot be detected) but not itsvalidity i.e. it says nothing about predicate
—¢.

To overcome this disadvantage we introduce a measure oftaintg of ¢ under observation. The
uncertainty expresses an amount of information which cdedmaed by attacker about predicgte

10 D.P. Gruska/Quantifying Security for Timed Process Algsbr

Definition 3.6. We define uncertainty{u(szo) of ¢ for processP and observatiorw,o # € as
O=0\ _ O=o0 1 O=o0 1
HU(P¢) —p(MTT(P)(z))IOgWP)(b:O)—’_(l_p(MTT(P)(b))log W:—O)

The uncertainty expresses how uncertain is predigatmder observatiom. It reaches maximal
value (equal to 1) when probabilities thaholds and that does not hold are equal. It reaches minimal
value (equal to 0) it validity of or —¢ is certain.

The uncertainty has a similar relationship to opacity asthgisal (see Theorem 3.2). Also the proof
is similar.

Theorem 3.6.1f P € Op% thanHu(Pf:(’) > 0 for everyo such thatO(o) # e.

The inverse implication in Theorem 3.6 does not hold but westiae following property. Its proof
is straightforward.

Theorem 3.7. If H,(P$=°) = 0 thenP ¢ Op, or P ¢ Opg’ .

Till now we have quantified an amount of information flow by meaf surprisal and uncertainty
for a given observation. But to get an appropriate quantification of security of pases we have to
limit a power of an attacker. First we start with a restriotion a length of observations the attacker
can performed. Let € Actt*. By |s|; we will denote the number of occurrences of actiaontained
in s. Note that every process can perform only finite humber abastdifferent fromt between any
two actiont. Let us suppose that an attacker can observe process hefuavio longer that fom time
units. Then we putl, (Fj}') = miny,, <, Hu(szo). Note that we know (see Theorem 3.5) that value of
Hu(PfZO) does not need to be correlated with the length.d#oreover the value of{,(P;) should be

related tolog |[MTr(P)°=°|. If Hu(P}) = 0then there exist an observatiorwhich gives us certainty
about validity of¢ or —¢. On the other side we can ask about the minimalich thatHu(Pg) = 0 (if

suchn exits). For example, leP, = Z?il hi.MX(EngO,#i it X + Litdaceeprea-X), O(hs) = e, for
all 5, O(x) = z for other actions, and predicate such thatp;(s) holds iff s contains actiorh; for some
giveni. For an attacker which can influence a performance of actioihsakes at mos2* time unites to

learn the private inpuk;.

3.5. Mutual information flow

Non-Deducibility on Composition (NDC for short, see in [@)a widely studied security property. It is
based on the idea of checking the system against all highpetential interactions, representing every
possible high level process. System is NDC if for every higlel userA, the low level view of the
behaviour ofP is not modified (in terms of trace equivalence) by the preseici. The idea of NDC
can be formulated as follows.

Definition 3.7. (NDC) P € NDC iff for every A, Sort(A) C HU {7,t}
(P|A)\ H ~,, P\ H.

Now we will define a quantified variant of NDC. Lek be a finite subset afictt*, A # 0. X 4 be a
corresponding discrete random variable with radgand uniform probability. LefP be a process and

D.P. Gruska/Quantifying Security for Timed Process Algsbr 11

let Yr be a random variable which ranges olvgr. , MTr((P|s)\ H)) with uniform probability (string
s is considered to be processVil).
We define the mutual information betweéhn, andYp as follows:

F(A~ P)=T(X4,Yp).

We illustrate mutual information by the following examphote that if two variables are independent
then mutual information is equal to zero.

Example 3.8. Let P = h.c.Nil + d.Nil, A = {¢, h}. We have thatF(A ~ P) = H(X) + H(Yp) —
H(XA,Yp)=1+1-1,58=0,42.

Again mutual information can be viewed as a quantificatiohDIC as it is stated by the following
theorem.

Theorem 3.8. Let P ¢ N DC then there existsl such thatF(A ~ P) > 0.

Proof:

Let P ¢ NDC. That means that there exists procéésands € Tr((P|H) \ H such thats ¢
Tr(P\ H). Leth;..... h., is a sequence of actions which participatess @amd are performed b#. For
the rest of the proof we chosé= {e¢, h;..... hy}. Clearly we haveF (A ~ P) > 0. 0

Also an inverse of the previous theorem holds.

Theorem 3.9. Let for every A, A C Actt*, A # () we haveF(A ~ P) > 0 for someP. Then
P ¢ NDC.

3.6. Conditional mutual information flow

Now suppose that we are interested not only whether somateraction was performed (see Definition
3.3) but also which one was performed. It can be modeled bygitypeonsidering predicateg, such
thato,(s) is valid if s contains private action. Here we offer an alternative approach which can exploit
an additional knowledge which might have an attacker atodiap

We will assume that proced3 receives some private input from the $ét, ..., h,}, some public
input from the se{l4, .. .,l,,} and produces an output from the $&t. . .., [;.}. (Note that this assump-
tion could be naturally generalized to several inputsfotgtp The process can perform also other actions
but those are out of interest.

Suppose that distributions of possible private and pulnipuis and the resulting distribution of a
corresponding public output are given by discrete randonabkesH;,,, L;, and L,,;, respectively.

Following an approach advocated in [4] define conditionatuaLinformation flow Fp(H ~ L))
between private inputs and public outputs, knowing pulbluts. It expresses an amount of information
on private inputs which can be learned by attacker who capgekc inputs and outputs. If there is no
information flow between private inputs and public outpltsoving public inputs) then this conditional
mutual information is equal to zero, i.e. public and privdéga are independent and attacker can learn
nothing.

12 D.P. Gruska/Quantifying Security for Timed Process Algsbr

Definition 3.8.
fP(H ~ L) = I(Hma Lout|Lin)

Note that for system in which the output,;) is uniquely given by the inputél;,, L;, (it means
that the system is deterministic with respect to these sypatl that the output does not depend on any
other inputs) then we have th&y (H ~ L) = Z(H;n, Lout|Lin) = H(Lout|Lin) (S€€ [4]).

Example 3.9. Let us consideP; = Z?il h,-.(Z?iL#i lj.l}efused +li.iaccepted) and suppose that pass-
words (actionsh;) are distributed with uniform probability. So the same Isofdr attacker’'s guesses.
Then we haveFp, (H ~ L) = H(Lout|Lin) = Zfiop(li).H(Loutle = 1;) what is roughlyk /2"
So an amount of information flow is rather low for a bigger wabf k. Now suppose that the password
is more likely (say, with probabilit2'? times higher) to be a word from a dictionary of s&n < k
(dictionary attack). Then we havep, (H ~» L) = H(Lou|Lin) = (28 —2™).(1/p).H(1/p, 1 — 1/p) +
2(n+10) /py 1 (210 /p, 1 — 219 /p), for p = 1/(2"7.(2'° — 1) + 2¥). In this case the amount of information
flow is rather high fom < k.

The concept mutual information flow is different from the ypoeis ones and cannot be directly
compared with them. Here, in fact, we consider only procesdgich do not belong to SNNI so we
cannot expect results similar to Theorem 3.6 and 3.7.

Restriction to just one input sent through a private chaandlone input sent through a public chan-
nel and one output sent through a public channel might bedsinictive. Let discrete random variables
H! Lgn and L* . correspond ta, j and k inputs/outputs, respectively. Then we define conditional

mn? out

mutual information flow as follows:

Fp(H ~ L) = maxI(H},, L |Lk,).

. wm?
1,5,k

Now we can ask whethé? is insecure (or secure) knowing value®g (H ~ L). If Fj(H ~ L) =
0 we know that public outputs and private inputs (knowing ulohputs) are independent variables
and hence the process could be considered secure. On thesimtbelet us consider two processes

2k 2k - - . . .
P =% hi,(zjzl,#i i lrefused + li-lacceptea) @nd its recursive version

P, = Z$i1 hzﬂX(Zik:Lj;éz lj-l_refused'X+ li'l_accepted-X)-
Clearly we haveFp, (H ~ L) = Fp,(H ~ L) but P, is less secure because the an attacker can try to
guess a password infinitely many times.

Now let us consider process
Py = (S hi (20 (02)+ (S hi (32 1l iy modas))- It consists of two
subprocesses. The first one produces a random oltpund the second one produces an output fully
determinated by the inputs. The both subprocesses areqatéfy¢x actions which might represent a lack
of knowledge of system behaviour. But it might be that thera way how to force the process to chose
the second subprocess which gives full information on tlaps inputs to an attacker. We propose a
solution to above mentioned situations: first we realififidanit a maximal length of observations (to
maximum ofn time units), and then we encode every computational patilsetpyyences, p € {0, 1,2}*
and put

Fp(H~ L) = Og;)i}infpp(]{v L)

D.P. Gruska/Quantifying Security for Timed Process Algsbr 13

whereFp,(H ~ L) denotes the information flow for proceBsand its computational paghand by|p|;
we denote length of a trace corresponding to computaticathlp In this way we obtain a more realistic
quantification of process security than it is given justhy(H ~ L).

3.7. Unprecise observations

Let as assume that on observer cannot observe time of aa@mmnrences with an absolute precision.
That means that a possible outcome of an observation fumetight be not just a single observation but
a set of different observations. Each element of the seesepits a possible observation. We can model
this kind of observations directly with observation fuocis (see Definition 3.1) but instead of that we
generalize definition of observational functions. We wihsider function) : Actt* — 297, If O(w)

is always a singleton that we get the previous concept ofreasenal functions. We assume that for
everyw,w € Actt* we have thab; | = 02|act (i.€. 01,02 restricted to actions fromct are equal)

for everyo;, 02 € O(w). That means that members ©{w) differ only in timing of actions. We now
modify the definition of opacity.

Definition 3.9. (Unprecise Opacity)

Given processP, a predicatep over Actt* is unprecise opaque w.r.t. the observation funcirif
for every sequences, w € Tr(P) such thatp(w) holds andO(w) # {e}, there exists a sequence
w',w’ € Tr(P) such that-¢(w’) holds andO(w) N O(w') # 0. The set of processes for which the
predicatep is unprecise opaque with respect®owill be denoted byqu‘é.

Example 3.10. Let as consider process

P = cttt.heNil + ctr.c.Nil, Oet.tt.hc) = {cttttr.cctttrcctt.reectr.ch and
O(et.t.c) = {et.t.t.c,ct.T.c,c.t.c} and predicates such thatp(s) iff s contains actiom. Clearly
P e qu% but for P ¢ Op(é, for precise observation which only hidesaction.

We have to modify accordingly definitions 817 (P)°=° so we will haveM T'r(P)°=° = {s|s €
MTr(P),o € O(s)}. Corresponding definitions for quantified information flonder unprecise obser-
vations are the same as for the case of precise observdiiotss way we obtain more realistic security
properties with respect to so called timing attacks whiahlzased on timing information on systems
behaviour. Many system, which are in theory opened to tha tf attacks, are reasonable safe if an
attacker capability to observe precisely elapsing of timkmited. Hence in that case there is no need
to modify such systems by, for example, adding random ddteyween some actions, to obtain their
security.

With this technique we could define also other kinds of unigeeobservations not only those ones
when elapsing of time cannot be observed with absolute gpogci For example, we can model observers
who sometimes cannot precisely distinguish some actiorticplarly if many actions are performed
between two time unites and so on.

4. Discussion and future work

We have developed the concept of quantified information flowired process algebras for different
settings. For the sake of simplicity we have used a timedga®algebra instead of a probabilistic timed

14 D.P. Gruska/Quantifying Security for Timed Process Algsbr

process algebra (depending on an application one can clebsedn reactive, generative or stratified
probabilistic calculi, see [8]). Using that kind of algebrae could have more adequate tools for ex-
pressing probabilities of traces. Instead of that we hawsl usiform probability distribution but all
the concepts and results could be easily translated to alpitcbic calculus. Actually we would have
different definitions op (M 1'r(P)g) which appears in Definition 3.4 and 3.6 of surprisal and uadey.

In the case of mutual information flow/(A ~» P)) we could associate probabilities also with
elements of sed (i.e. X4 could have also other than uniform probability distribadi@nd withYp in
Z(Xa,Yp).

In the case of the unprecise observations, we could gepertdis concept as follows. We could
permit that the observations can be unprecise not only \eipact to elapsing of time but they could
be unprecise in general. We can model this by observatiomatibns which map every trace of actions
to a discrete random variable which ranges over strings f&m Moreover we can associate some
probability distribution to resulting possible obsereats for a given "unprecise” observer. For example,
we can model Gaussian (or any other) distribution of errorglifferent kinds of observation etc.

As regards the future work, besides considering probébilsocess algebra, we plan to investigate
changes of a level of security of proceBshy putting it to different contexts and by composing it with
other processes.

References
[1] Bryans J., M. Koutny and P. Ryan: Modelling non-deduldipusing Petri Nets. Proc. of the 2nd Interna-
tional Workshop on Security Issues with Petri Nets and oBwnputational Models, 2004.

[2] Bryans J., M. Koutny, L. Mazare and P. Ryan: Opacity Gafiged to Transition Systems. In Proceedings
of the Formal Aspects in Security and Trust, LNCS 3866, SmminBerlin, 2006

[3] Busi N. and R. Gorrieri: Positive Non-interference ireElentary and Trace Nets. Proc. of Application and
Theory of Petri Nets 2004, LNCS 3099, Springer, Berlin, 2004

[4] Clark D., S. Hunt and P. Malacaria: A Static Analysis fougtifying the Information Flow in a Simple
Imperative Programming Language. The Journal of Compeu®y, 15(3). 2007.

[5] Focardi, R., R. Gorrieri, and F. Martinelli: Informatidlow analysis in a discrete-time process algebra.
Proc. 13" Computer Security Foundation Workshop, IEEE Computer&@gp@&ress, 2000.

[6] Focardi, R., R. Gorrieri, and F. Martinelli: Real-Timaformation flow analysis. IEEE Journal on Selected
Areas in Communications 21 (2003).

[7] Focardi, R. and S. Rossi: Information flow security in Rymc Contexts. Proc. of the IEEE Computer
Security Foundations Workshop, 307-319, IEEE ComputeieBpPress, 2002.

[8] GlabbeekR.J.van, S. A. Smolka and B. Steffen: Reactererative and Stratified Models of Probabilistic
Processes Inf. Comput. 121(1): 59-80, 1995

[9] Gorrieri R. and F. Martinelli: A simple framework for reime cryptographic protocol analysis with com-
positional proof rules. Science of Computer Programmicgise Volume 50, Issue 1-3, 2004.

[10] Gruska D.P.: Probabilistic information flow securiundamenta Informaticae, Vol. 85, No. 1-4, 2008.
[11] Gruska D.P.: Observation Based System Security. Fuedéa Informaticae, vol 79, Numbers 3-4, 2007.

[12] Gruska D.P.: Information-Flow Attacks Based on Lindit®bservations. in Proc. of PSI'06, Springer Ver-
lag, LNCS 4378, Berlin, 2007.

D.P. Gruska/Quantifying Security for Timed Process Algsbr 15

[13] Gruska D.P.: Information-Flow Security for Restridtattackers. in Proc. of 8th International Symposium
on Systems and Information Security, Sao Jose dos Camp@8, 20

[14] Gruska D.P.: Information Flow in Timing Attacks. Pratbngs CS&P’04, 2004.
[15] Lowe G.: Quantifying information flow”. In Proc. IEEE @uputer Security Foundations Workshop, 2002.

[16] Segala R. and N. Lynch: Probabilistic Simulations foolfabilistic Processes. Nord. J. Comput. 2(2): 250-
273, 1995

[17] Shannon, C. E.: A mathematical theory of communicati®ell System Technical Journal, vol. 27, 1948.

