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Abstract. A general framework for defining security properties is prasd. It allows us to model
many traditional security properties as well as to define nees. The framework is based on
process algebras contexts and processes relations. Bypajate choice of both of them we can
model also probabilistic and quantified security propertie
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1. Introduction

The aim of this paper is to present a general framework wHiowa us to define various information
flow based security properties. The framework is based oreftiand timed probabilistic) process alge-
bras and relations on them. First we express the informétienby means of observation functions and
by opacity ([3]). The observation functions can hide sonsesy activities, can express unprecise ob-
servations and so on. The information flow will be expressgdgacity. A predicate is opaque if from
any observation of system activities an observer cannataiedhether the predicate holds or it does
not hold. In general, opacity is undecidable, roughly speaklue to unlimited power of observational
functions and the corresponding predicate. To overconsepitdblem we model both the observation
function and the predicate by processes. We define comrepess defined security properynd we
show that also many other security properties as NDC (sg@e38INI (see [7]),Secrecy(see [2], and
hence also Perfect Security Property, see [20]) are speasals of this concept.

Traditional security properties are frequently critidzZ®er being either too restrictive or too benev-
olent. For example, usually they consider a standard acwegsol process to be insecure since there
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is always some (even very small) information flow for an d&émaonhich tries to learn a password. To
overcome these disadvantages we propose some alterretiveétys properties which are based on prob-
abilistic process alegebra and information theory. We stiat/ they can be again defined by suitable
timed probabilistic contexts. In this sense the presentetk wan be seen as a continuation of work
presented in [12] (probabilistic opacity) and [11] (quéinétion of security properties).

The paper is organized as follows. In Section 2 we describditied process algebra TPA which
will be used as a basic formalism. In Section 3 we presentarastigate general notion of information
flow for different observation functions and security reguients. In Section 4 we define and study
process defined security properties which are in Sectioriéndrd to probabilistic setting.

2. Timed Process Algebra

In this section we define Timed Process Algebra, TPA for shidPA is based on Milner's CCS but the
special time actiort which expresses elapsing of (discrete) time is added. Tosepted language is
a slight simplification of the Timed Security Process Algebrtroduced in [7]. We omit the explicit
idling operator. used in tSPA and instead of this we allow implicit idling obpesses. Hence processes
can perform either "enforced idling” by performintgactions which are explicitly expressed in their
descriptions or "voluntary idling”. But in the both caseteimal communications have priority to action
t in the case of the parallel operator. Moreover we do not dictions into private and public ones as it
is in tSPA. TPA differs also from the tCryptoSPA (see [10]PATdoes not use value passing and strictly
preservesime determinacyn case of choice operater what is not the case of tCryptoSPA.

To define the language TPA, we first assume a set of atomigatimbolsA not containing symbols
7 andt, and such that for every € A there exist& € A anda = a. We definedct = AU {7}, Actt =
ActU{t}. We assume that b, ... range ovet4, u,v, ... range overAct, andzx,y ... range overActt.
Assume the signatur® = (J, ¢ 1,2y Xn, Where

Yo = {Nil}

Y1 = {z.|ze Au{t}} U{[S] | Sis arelabeling functioh
U(\M | M C A}

Yo = {,+}

with the agreement to write unary action operators in prefirif the unary operatofs], \ M in postfix
form, and the rest of operators in infix form. Relabeling fimms, S : Actt — Actt are such that
S(a) = S(a)fora e A, S(r) = 7 andS(t) = t.

The set of TPA terms over the signatutas defined by the following BNF notation:

P = X | op(P,P,...P,) | pnXP

whereX € Var, Var is a set of process variableB, P, ... P, are TPA termsuX — is the binding
constructop € X.

The set of CCS terms consists of TPA terms withoaiction. We will use an usual definition of
opened and closed terms whet¥ is the only binding operator. Closed terms which are t-gedr@ach
occurrence ofX is within some subexpressiand i.e. between any twoactions only finitely many non
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timed actions can be performed) are called TPA processete tNat Nil will be often omitted from
processes descriptions and hence, for example, instead. 6fil we will write justa.b.

We give a structural operational semantics of terms by meflabeled transition systems. The set
of terms represents a set of states, labels are actionsAr@m The transition relatior- is a subset of
TPA x Actt x TPA. We writeP % P’ instead of( P, z, P') € — and P /% if there is noP’ such that
P 5 P'. The meaning of the expressidh = P’ is that the termP can evolve taP’ by performing
actionz, by P ~, we will denote that there exists a terfti such that? = P’. We define the transition
relation as the least relation satisfying the inferencesbr CCS plus the following inference rules:

Tnr b oara Al Tt 5 A2
Nil — Nil u.P —- u.P
PLP.QLQ.PIQE L, PLPQEQ
a
PlQ5P|Q P+Q 5P +qQ

Here we mention the rules that are new with respect to CCmsid1, A2 allow arbitrary idling.
Concurrent processes can idle only if there is no posgitbfitan internal communicationfa1). A run
of time is deterministic.§). Regarding behavioral relations we will work with the tidneersion of weak
trace equivalence. Note that here we will use also a condepbservations which contain complete
information which includes alse actions and not just actions from andt¢ action as it is in [7]. For
S = T1.T9..... Tn,x; € Actt we write P = instead ofP 2223 ... 24 and we say that is a trace ofP.
The set of all traces aP will be denoted by'r(P). We will write P = P’ iff P(5)* % (5)*P" and
P = instead of? 22 ... 2. By ¢ we will denote the empty sequence of actions Sty:c(P) we will
denote the set of all successorsiaNdSort(P) = {z|P >% for somes € Actt* andx # 7}. If the
setSucc(P) is finite we say thaP is finite state.

Lets € Actt*. By |s| we will denote the length of i.e. a number of action contained sn By s|p
we will denote the sequence obtained frery removing all actions not belonging 1. For example,
|s|(+}| denote a number of occurrencest @fi s, i.e. time length ok.

Definition 2.1. The set of weak timed traces of processP is defined as
Tro(P) = {s € (AU {t})*|3P".P = P'}. Two processP and(Q are weakly timed trace equiv-
alent P ~,, Q) iff Tr,(P) = Tr,(Q) and process) is a trace simulation o (P =, Q) iff
Try(P) C Try(Q).

3. Information Flow

To formalize information flow we do not divide actions intoltic and private ones at the system de-
scription level, as it is done for example in [10], but we usea@e general concept of observation and
opacity. In [3] and [4] opacity was exploited for transitispstems and Petri nets, respectively.

First we assume an observation function i.e. a functibn Actt* — ©*, whereO is a set of
elements called observables (note that we have no othereetgnts or® except that it has to be total,
i.e. defined for every sequence of actions). Now supposewbdiave some security property. This
might be an execution of one or more classified actions, aougixa of actions in a particular classified
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order which should be kept hidden, etc. Suppose that thigeptp is expressed by a predicateover
sequences. We would like to know whether an observer carcddta validity of the property just by
observing sequences of actions fratett* performed by system of interest. The observer cannot deduce
the validity of ¢ if there are two sequences, w’ € Actt* such thaty(w), ~¢(w') and the sequences
cannot be distinguished by the observer ales(w) = obs(w’). We formalize this concept by the notion

of opacity.

Definition 3.1. (Opacity)

Given processP, a predicatep over Actt* is opaque w.r.t. the observation functidn if for every
sequencev, w € T'r(P) such thaip(w) holds andO(w) # ¢, there exists a sequeneé, w’ € Tr(P)

such that-¢(w’) holds andO(w) = O(w'). The set of processes for which the predicaties opaque
with respect ta? will be denoted b)Op%.

The notion of opacity is rather general. With its help martyeotsecurity properties can be defined
(anonymity, non-interference etc. see [3]). On the othde,sdpacity is undecidable even for the simplest
possible observation function, namely for the constant and for finite state processes (see [15]). To
obtain not only decidable but mainly more realistic segupitoperty we will modify opacity in several
ways.

First, let us consider attackers which cannot see perfayrmoininternal actions but on the other
side they can always see elapsing of time. So we assumé tha®® and if O(s) = o ands =
st s ™Ry, s, € Act* theno = o01.8™ ... op_1.t" 1ok, 0, € (O \ {t})*. From now
on we will consider only this type of observational functaf.

Undecidability of opacity is caused by considering very pdu attackers (very powerful observa-
tion functions) and predicates which are possibly verydiffito be computed. So to overcome these
obstacles, we will model both observational functions areatljgates by processes.

Let us consider the set of atomic actiohsBY the ghost set of actions t (we will denote it byA9)
we will call the set{a¥|a € A} (we assume thal N A9 = (). For a sequence of actiens € Actt* we
will denote the corresponding sequence of ghost actiosf wyhere every elementary action is replaced
by its ghost action. Note that actionsand~ have no a special ghost counterpart as well as a special
unique action,/ indicating a successful computation and which extends ehefsactions(/ € Actt)
ie.t9 =t,79 =1,/ = /. By A% we will denote ghost actions of i.e. A99 = (A9)9.

Definition 3.2. The set of successful weak timed traces of proceBs is defined as

Try(P) = {s.y/|s € (AU {t})* such thatP SQ>/}. Two processP and @ are successfully weakly
timed trace equivalent{ ~,, , Q) iff T'r,, ,(P) = T'r,, ,(Q) and process) is a successful trace simu-
lation of P (P =,/ Q) iff Ty, /(P) C T'ry /(Q).

Definition 3.3. ProcessF is called process definition of predicateover sequences of actions if for
everys € A* such that(s) it holds

P iff (P|Ey)\ Sort(P) "=
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Example 3.1. Let ¢(s) holds iff s = s1.h.s9,h € H i.e. if s contains a private action from the set
private actionH. Then the following process

Fy = pX.( Z z.xd X + Z .29 F')
x€Actt\H z€H

where
F'=pX.( > za%X +/.Nil)
x€Actt

is the process definition of predicate

Example 3.2. Let ¢™™(s) for 1 < n < m holds iff s = sy.h.s9.h/.s3,h,h/ € H such thatn <
|s2y| < m and|s2|u| = ¢, i.e. ¢™™(s) holds if s contains two private actions fromf and time
elapsing between their occurrences is betweandm time units.

Then the following process

Fy = pX.( Z r.ax?d X + Z .29 F')

x€Actt reH
where
Fl=pX.() zad X +t.F),
x¢H
Fi=pX.()  waf X +t.F)
x¢H
for: < n and
c¢H
fori =n,

F! = ,uX.(Z z.x9. X + Z a9 F" +t.F)
x¢H x€H

fori < mand
F' = pX.() w2 X +t.X + /.Nil)
is the process definition of predicat& ™.

Now we will define also observation functions by processesthaMt loss of generality we can
suppose that the set of observahi2és a subset ofictt.

Definition 3.4. Procesd is called process definition of observation funct@mwn sequences of actions
if for every s € Actt* such thatO(s) = o it holds

P = iff (P|Fo)\ Sort(P) %
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Example 3.3. Let O(s) is such that that all actions from the set of private actiéhare not seen i.e.
S|l actn i =w O(s). Then the following process

Fo = puX. Z z.X
xeH

is the process definition of observation function

Theorem 3.1. Let F is process definition of observation functiéh F, andF.,, are process definitions
of predicatesp and—¢, respectively. The® € Op% iff

((PFp) \ Sort(P))|Fo) \ Sort(P?) 2y ((P|FL) \ Sort(P))|Fo) \ Sort(P?).

Proof:

LetP ¢ Op‘g andFp is process definition of observation functiéh F;, andF4 are process definitions
of predicatesp and—¢, respectively. Letw is a trace ofP such thaip(w) holds andO(w) is non empty
sequence. Then there exists (Definition 4.2) such that¢(w) holds andO(w) = O(w’). Then from
Definitions 3.3 and 3.4 we hav¥e(P|F)\ Sort(P))|Fo)\Sort(P?) =/ ((P|F-g)\Sort(P))|Fo)\
Sort(PY). The oposite direction of the proof is similar. O

Note that sinceSort(P)) N Sort(Fo) = 0 we have(((P|Fy) \ Sort(P))|Fo) \ Sort(P9) =
(P|Fg|Fo) \ (Sort(P9) U Sort(P)).

4. Process defined information flow

Theorem 3.1 leads to the following concept of process defseedrity. By context we mean a process
term with placeholdef{. Formally, the set of TPA contexts over the signatdrés defined by the
following BNF notation:

C ==H |X | op(C1,Co,...Cyp) | uXC

whereX € Var, Var is a set of process variables, C1, ... C, are TPA contextsyX — is the binding
constructop € ¥ andH is the place holder. B¢'(P) we denote process obtained from process context
C and proces$ by substitutingP by place holdef, i.e. C(P) = C[P/H].

Definition 4.1. Security propertyS is process defined if there are two process conté€xts”; and a
relation between process&ssuch that for every procegs € TP AitholdsP € Siff (Cy(P),C1(P)) €
R.

Clearly, from Theorem 3.1 we see that opacity is process etfimoperty for precess defined ob-
servation function® and predicate® and —¢, respectively. The corresponding contexts @fe =
(H|Fy) \ A)[Fo) \ A9, Cy = ((H|F-) \ A)|Fo)\ A9, respectively andt ==,,..

The definition of opacity (see Definition 4.2) of predicatés asymmetric in the sense thaigifw)
does not hold than it is not required that there exists amdthee for which it holds (in genera}p‘é #+
Opzf). This means that opacity says something to an intruderwthies to detect only validity o (if
it is opaque, than validity cannot be detected) but not itsvaidity i.e. it says nothing about predicate
—¢. Hence we define strong variant of opacity.
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Definition 4.2. (Strong Opacity)

Given proces$, a predicate) over Actt* is strongly opaque w.r.t. the observation functiif for every
sequencev, w € Tr(P) such thatp(w) holds andD(w) # ¢, there exists a sequeneé, w’ € Tr(P)

such that~¢(w’) holds andO(w) = O(w'). Moreover, for for every sequenee, w € T'r(P) such
that —¢(w) holds andO(w) # ¢, there exists a sequenag,w’ € Tr(P) such thatp(w’) holds and
O(w) = O(w'). The set of processes for which the predicats opaque with respect t© will be

denoted bysOpY).

Theorem 4.1. Strong opacitysOp‘g is process defined i is process definition of observation function
O, F, andF., are process definitions of predicateand—¢, respectively.

Proof:
The proof follows from the fact thaP € sOp‘é iff ((P|Fy) \ Sort(P))|Fo) \ Sort(PY) =,
((P[F-g) \ Sort(P))|Fo) \ Sort(P9). O

Now we show process definability of Strong Nondeterminibtan-Interference (SNNI, for short).
We recall its definition (see [7]). Suppose that all actioresdivided in two groups, namely public (low
level) actionsL and private (high level) actiond i.e. A = LUH, LNH = (). Then proces® has SNNI
property if P\ H behaves likeP for which all high level actions are hidden for an observereXpress
this hiding we introduce hiding= operatét/M, M C A, for which if P % P’ thenP/M % P'/M
whenever ¢ M U M andP/M = P'/M whenever € M U M. Formal definition of SNNI follows.

Definition 4.3. Let P € TPA. ThenP € SNNIiff P\ H ~,, P/H.

Theorem 4.2. PropertySN N1 is process defined.

Proof:
Let Fp is the process defined in Example 3.3 andlet= (H) \ H, C2 = (H|Fo) \ H andR =~,,,. It
is easy to see thdt € SNNT iff (C1(P),C2(P)) € R. 0

Note. Let us consider processé$ defined in Example 3.1 anflp defined in Example 3.3. It is easy
to check that SNNI property can be seen as a special case cfyofax corresponding process defined
predicatep and process defined observation functidifsee also [13]).

Non-Deducibility on Composition (NDC for short, see in [8)another a widely studied security
property. It is based on the idea of checking the system agalhhigh level potential interactions,
representing every possible high level process. SystenDiS Nifor every high level user, the low
level view of the behaviour aoP is not modified (in terms of trace equivalence) by the presearicA.
The idea of NDC can be formulated as follows.

Definition 4.4. (NDC) P € NDC iff for every A, Sort(A) C H U {r,t}
(P|A)\ H ~,, P\ H.

Theorem 4.3. PropertyN DC is process defined.
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Proof:

LetCy = (H|Top) \ H,Cy = (H) \ H, andR =~,, whereTop = uX.>, ,; h.X. In[8] itis proved

that to show NDC property it is enough to check it with respgedo called the most powerful attacker

(T'op). Then it holdsP € NDC'iff (C1(P),C2(P)) € R, and hence propertl)y DC'is process defined.
0

NDC property is based on an idea that procBssommunicates with (one) high level user or alter-
natively has high level inputs from the top level. By procdsfined security we can refine this concept
by allowing more high level users nested in vareeecy was introduced in [2] for labeled transition
systems. Now we repeat its definition slightly modified foogasses. FunctiohP-inferable proper-
ties is a function that, given a trace w, a propedyover traces and an equivalence relati@rover
traces, represents the knowledge of the observer aboutrtipeny ¢ from w. IP(w,¢,R) = T
if V' : (w,w') € R = ¢(w'), IP(w,¢,R) = L if Vo' : (w,0w') € R = -¢(w') and
IP(w,», R) = m otherwise, wherd, L, m are three different symbols. Letis predicate over traces
specifying a subset of traces of interest. Now we are reattyrtoalize secrecy

Definition 4.5. (Secrecy)Let P be a processp andy be two properties over traces. The propeftis
a secret inp for P w.r.t. R if for all w such thatp(w) holds, we have P(w, ¢, R) = m.

It can be shown that secrecy can capture several standaminigzifion properties such as noninter-
ference or Perfect Security Property (see [20]). subpssseésee [14]) oP or thatP can send/receive
high level outputs/inputs on several nested levels notssaeg on the top level. These situations could
be modeled by contexts of the forth= (HS; ... S,|Top1|...Top,) whereS; are relabeling functions
andTop; processes similar td'op but exploiting a dedicated alphabet given$y

Another very general security property, callgecrecy was introduced in [2] for labeled transition
systems. Now we repeat its definition slightly modified fasqesses. FunctiohP-inferable properties
is a function that, given a trace w, a propedgtyover traces and an equivalence relati®rover traces,
represents the knowledge of the observer about the propefitym w. IP(w,¢,R) = T if Vo' :
(w,w') € R = ¢(w'), IP(w,¢,R) = Lif V' : (w,v') € R = —¢(w') andIP(w, ¢, R) = m
otherwise, wherel', L andm are three different symbols. Letis predicate over traces specifying a
subset of traces of interest. Now we are ready to formaimecy

Definition 4.6. (Secrecy)Let P be a processy andp be two properties over traces. The propeftis
a secret inp for P w.r.t. R if for all w such thatp(w) holds, we havd P(w, ¢, R) = m.

It can be shown that secrecy can capture several standardiation properties such as noninterfer-
ence or Perfect Security Property (see [20]).

Similarly to opacity if we can restrict secrecy to predicate—¢ andy which are process defined
then secrecy becomes precess defined property.

Theorem 4.4. Secrecy is process defined if corresponding predicateg) and ¢ which are process
defined.
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Proof:

Let Fyy, F-4, F, are corresponding process defined predicatesp andy, respectively. Correspond-
ing contexts are as followsCy = (H|Fj|F)) \_ {Sort(Fy) U Sort(F,))} andCy = (H]ng)\f’%)_ \
{Sort(F-4) U Sort(F,)} where processes with comas use relabeled ghost alphabet®inition
3.3). O

Process definability of a security property allows us to waditional tools developed for process
algebras. Moreover in many cases, for example for finitee stahtexts and processes, corresponding
security property is decidable. We repeat that opacity iglecidable even for finite state processes but
it is not true for process defined opacity.

Theorem 4.5. Let F is process definition of observation function F;, andF, are process definitions

of predicatesp and—¢, respectively ando, F, andF., are finite state processes. ThEnc Op% is
decidable for finite state processes.

Proof:
From Theorem 3.1 we know that the corresponding contextfrare state contexts.
O

Note that similar theorem can be formulated also for stropgcity. By process defined security
concept we can also model many other non-standard secuoiepies.

Example 4.1. Let us assume that an attacker cannot observe processeader tham time units from

its start. That means that in that case processes are catsittebe secure if the attack cannot be
performed on sequenceshorter tham times units (s, | < n. We can model this situation by adding
the following process to the context given in Theorem 3.1.

Fo, =t".\/.Nil.

Example 4.2. Let O(s) is such that that all actions from the set of private actifihare not seen as in
Example 3.3 and moreover elapsing of one time unit can bew#lemnprecision up to three time units,
for example, due to some delays of an interconnection n&twor

Then the following process

Fo=pX. Y aX+pX. Y wa29X+pXt(X +ttX +ttt.X)
xeH z€A\H

is the process definition of observation functiGn

It is easy to see that above mentioned properties - say of liinited attacks and time unprecise
observations, are process defined.

A special class of process defined security properties asetbnes which are defined by means of
relation which is a congruence. For such properties we Havéotlowing compositional theorem.
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Theorem 4.6. Let S is process defined security property such that the correlappnelationR is a
congruence. LeP € S. Then we have) € S for every@, (P, Q) € R.

Proof:
Straightforward from definition of process definability aswhgruency properties. O

Moreover, to check security of processes which are defineddans of one of usual process relations
we can exploit existing software tools.

Traditional security properties as opacity, SNNI or NDC fejuently criticized to be either too
benevolent or too restrictive. In the former case they magsign a process to be secure despite the
fact that practically its security is very limited and in tlaer case, they refuse as insecure processes
generally considered to be secure. For example, usuallyahresider a standard access control process
to be insecure since there is always some (even very smigthiation flow for an attacker which tries
to learn a password - at least after each attempt a space siblgopasswords is reduced. On the other
side they might accept a process as secure despite thedhanthttacker can learn, for example, a whole
private key except one bit and hence the size of the spacesesftppe private keys is reduced to two.

There are several ways how to deal with the above mentioneatisins in the framework of process
algebras. For example, we can modify concept of opacity alm suway that it will be defined not for
predicates over traces but over mappiggs) — {0,...,k} (or predicates of many-valued logics) and
it will be required that for every such that¢(s) = n there existss’ such thatp(s’) < n such that
O(s) = O(s’). Or we work with predicate®(s) = ¢1(s) A« A @r(s) Ord(s) = d1(s1) A+ A dr(sk)
wheres = s1...s; and evaluate opacity of eaeh separately. Each of predicates may say, for
example, something aboisth bit of a private key.

Alternatively, we use probabilistic process algebras t déth the above mentioned criticism.

5. Probabilistic process defined information flow

Security properties as opacity, SNNI or NDC do not take intooaint neither attacks which take into

account changes of distribution of public outputs due tangea of private inputs nor security of sys-

tems based on very low probabilities for attacker to leames@rivate information. There are several

ways how to solve the above mentioned problems. To expla@mtho discuss them and to suggest an
alternative approach, we need some preparatory work.

First we add probabilities to TPA calculus. We will followtenating model (the approach presented
in [16]) which is neither reactive nor generative nor sfiadi (see [17]) but instead of that it based on
separation of probabilistic and nondeterministic traosg and states (see [12]). Probabilistic transitions
are not associated with performing of actions but labeldg with probabilities. In so called proba-
bilistic states a next transition is chosen according tdoahbidlistic distribution. For example, process
a.(0.3.b.Nil & 0.7.(a.Nil + b.Nil)) can perform actiom and after that it reaches the probabilistic state
and from this state it can reach with probability 0.3 theestahere only actio can be performed or
with probability 0.7 it can reach the state where it can penfeithera or b.

Note that resented approach slightly differs from the Qakdior Communicating with Time and
Probabilities ([16]), where first probabilities are addedXCS and later time is added but without an
explicit special time action.
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Formally, to add probabilities to TPA calculus we introdaceew operato@D, . ; ¢;.F;, ¢; being real
numbers in(0, 1] such that) ., ¢; = 1. Processes which can perform as the first action probadbilist
transition will be called probabilistic processes or fdt® stress thaP is non-probabilistic process
we will sometimes writePy if necessary). Hence we require that Bllprocesses i, ; ¢;.P; and
in P, + P, are non-probabilistic ones. By pTPA we will denote the sealbprobabilistic and non-
probabilist processes and all definitions and notationsTfo& processes are extended for pTPA ones.
We need new transition rules for pTPA processes. We mentibntbree rules which are significantly
different from those ones for TPA.

— A3 m A4
Py — Py @ie[q’i'-P’i_)Pi
PLP.Q5Q
— q.;Q_)Q Pa2
PlQ=P|Q

For probabilistic choice we have the rulet and for a probabilistic transition of two processes
running in parallel we have the rulBa2. The technical ruled3 enables parallel run of probabilistic

and non-probabilistic processes by allowing to non-praistio processes to perform1+ transition and
hence the rulé’a2 could be applied.

Introducing probabilities to process algebras usuallyseatseveral technical complications. For ex-
ample, an application of the restriction operator to prdistic process may lead to unwanted deadlock
states or to a situation when a sum of probabilities of alfjointg transitions is less than 1. A normaliza-
tion is usually applied to overcome similar situations. Vendt need to resolve such situations on the
level of pTPA calculus since we will use only relative profliibs of sets of computations. To compute
these probabilities normalization will be also exploited bnly as the very last step.

To add probabilities to traces one has to assign to eachbp®smth of computation resulting to a
given sequence of action corresponding probability andim gp all of them. There are several ways
how to do that we refer reader to [18, 9, 12].

Some security properties which are defined in the previoasosecould be directly and meaning-
fully translated to probabilistic setting. For examplewi take probabilistic processes and probabilistic
version of the weak trace equivalence,(,) which require that process have the same traces with the
same probabilities we obtain probabilistic version of SNINtl NDC property.

Definition 5.1. Let P € pT'PA. ThenP € pSNNI iff P\ H ~,,, P/H.
Definition 5.2. (pNDC) P € pNDC iff for every A € pT PA, Sort(A) C HU{r,t}
(PIA)\ H ~py P\ H.

Security property pSNNI says that an observer which canrebggocess” for a long time cannot
distinguish whether private actions are not sees or argatest.

Security property pNDC has also a natural motivation - pgeéehas this property if private process
A cannot influence not only set of possible traces but also disribution.
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Note that property pNDC is defined also for non probabiliptioperties. Moreover, it is easy to see
that for everyP, P € T PA we have that ifP € pNDC thenP € NDC.
In general, we define probabilistically process defined rigqoroperties as follows.

Definition 5.3. Security propertyS is probabilistically process defined if there are two prolistic
process context€’}, C¥ and a relation between probabilistic proces&&ssuch that for every process
P e pTPAitholdsP € Siff (C¥(P),CE(P)) € RP.

Note that probabilistic process definability can be appéésb on non probabilistic processes. By
choosing either suitable probabilistic contexts or byahlé probabilistic process relation we can model
many haturally motivated security notions. For example,oca&r choose some probabilistic process
relation to admit some level of tolerance behind which aackiér cannot observe processes (see for
example ([1, 12]). We can model unprecise observations semwhtions which might have some known
distribution of errors etc.

Example 5.1. Let O(s) be an observation function from Example 4.2 with probabsitassociated with
unprecise observations. Then the following timed proligthil process

Fo=pX. ) aX+pX. Y 29X +pXt(07.X ®024LX ©0.1.L.LLX)
z€H x€A\H

is the probabilistic process definition of observation fiocO.

Another approach how to add some quantities to securityepti@s is represented by various mea-
sures of an amount of information flow. To express quantitinfafrmation flow we will exploit Schan-
non information theory (see [19]). Let be a discrete random variable and detanges over the set
of values whichX may take. Byp(z) we will denote probability thatX takes the valuer. Self-
information (or surprisal) is a measure of the informati@mtent associated with the outcome of the
random variableX. It is defined asH(x) = log, W{E)- We putH(x) = oo if p(z) = 0. The infor-
mation entropy (also called self-information or a measdrenzertainty) of the variableX is denoted
H(X) and is defined a${(X) = > p(z).log, ﬁ. We definep(x).logbﬁx) = 0if p(x) = 0.
We will work with the baseb of log; equal to 2 and hence the unit of the information entropy will
be one bit. Sometimes we will writ&/(p1,...,p,) instead ofH(X) if probabilities of values ofX

arepy,...,p,. Given two random variableX andY’, the mutual information between them, written
I(X;Y), is defined ag (X; V) = -, >°, p(z,y).log pg’g;’()y). It can be easily shown that( X;Y") =

H(X)+HY)-H(X,Y) =H(X) -H(X]Y) =H(Y) - H(Y|X). Conditional entropy o given
knowledge ofY" is defined ast(X|Y) = >_, p(y) H(X|Y = y), and conditional mutual information
betweenX andY given knowledge of is defined ag (X;Y|Z) = H(Y|Z) — H(Y| X, Z).

Information theory can be used to measure an amount of irfiomwhich can attacker gain (see [5]
and [11] for quantification of information flow in imperatil@nguages and for process algebras, respec-
tively). Information flow is quantified as a surprisal of valaf private variable or predicates validity or
its entropy. Alternatively, it can be quantified as a cowmaiil mutual information flow between private
and public inputs K;,,, L, ) and the resulting distribution of a corresponding publitpoit (L) as
Z(H;p, Lowt|Liy) or as difference between entropy &f,, before and after "attack” i.e. observirdg,,;
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knowing L;,,. That means a8l (H;y|Lin) — H(H;n|Lin, Lowt)- In all this cases it is not assumed that an
attacker might have some belief about private data or astidrat is not always the case.

Suppose that an intruder tries to learn a secrete passwBte 6tarts an attack with a prebelief
that the password is very likely P. This prebelief is giveriddgrmation received from past experiences,
obtained form some cooperator etc. Say that there are 1@bppasswords and the attackers prebelief
B is expressed by the following probability distributigP”) = 0.9 andp(xz) = 1/990 for x # P.
Hence entropy o3, H(B) is about 1. Suppose that the attacker tries as the first tlesvpad P and it
fails. After that the attacker has to change his/her prebellow a new belief3’ is such that all possible
password have the equal probabillty99 andH(B’) is roughly seven times higher. Hence according to
traditional view there is no information flow since uncemtgiis higher after an attack what contradicts
our intuition (in [6] this problem is formalized for a simplaperative language).

Here we formalize this concept in the presented framewankp8Bse that attacker beliefs is expressed
by probabilistic procesa which can perform only sequences of public input action . [,, of lengthn
each with a probability corresponding to attackers bel.the other side leff be similar process but
with probabilities for each sequence to be equal. By sinlahnique as it was used in Examples 3.1 and
3.3 we can force process to perform always the whole sequarinputs. Then there is an information
flow for attacker with beliefd if uncertainty of¢ under observation for (P|A) \ L, is lower than for
(P|G) \ L. This can be expressed by contexts &fjd= C1((H|A) \ Lin), C5 = C2((H|G) \ Lin),

C1, Cy being context from opacity definition (see Theorem 3.1) addtion <,,,,,, on processes such
that P =<,/ Q if for every weak trace of” there is a weak trace @§ such that corresponding overall
probabilities are not higher f@p. Hence the property is probabilistic process defined.

6. Conclusions

We have presented the concgpbcess defined security properyd we have showed that many of
already studied information flow based security propet3C, SNNI, Secrecy, Perfect Security Prop-
erty) can be seen as its special cases. This concept offemlyoan uniform framework for security
theory but can be used to model more elaborated securitegiep than traditional ones and moreover,
by careful choice of process contexts and process relatiertan obtain properties which can be effec-
tively checked (note that in general, opacity is undeciglatBy this concept we can also naturally model
security with respect to limited time length of an attackthad limited number of attempts to perform an
attack and so on.

Moreover, by exploiting probabilistic process algebratests we can model various probabilistic
security properties and quantify an amount of informatiowfas well.

The presented approach allows us to use also other typesad#gw algebras enriched by operators
expressing also other properties (space, distributiotwarking architecture, processor or power con-
sumption and so on) and in this way also other types of attatlksh exploit these information to detect
information flow through various covert channels can be rilesd.

Process defined security limits us to predicates and olisamfainctions (i.e. observers) which can
be expressed by process algebra processes. In fact, thisti@s does not represent any real limitation.
Practically all predicates and observation function ogiiest (used in known attacks) can be described
by finite state processes and there is even no need to exyllainfversal power of process algebras. In
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other words, it has no practical meaning to consider preégicand observation functions which cannot
be computed.
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