
Fundamenta Informaticae 101 (2010) 1–14 1

DOI 10.3233/FI-2010-256

IOS Press

Process Algebra Contexts and Security Properties∗

Damas P. Gruska†

Institute of Informatics, Comenius University, Mlynska dolina, 842 48 Bratislava, Slovakia

gruska@fmph.uniba.sk

Abstract. A general framework for defining security properties is presented. It allows us to model
many traditional security properties as well as to define newones. The framework is based on
process algebras contexts and processes relations. By appropriate choice of both of them we can
model also probabilistic and quantified security properties.

Keywords: information flow, opacity, surprisal, uncertainty, security, quantified information flow

1. Introduction

The aim of this paper is to present a general framework which allows us to define various information
flow based security properties. The framework is based on (timed and timed probabilistic) process alge-
bras and relations on them. First we express the informationflow by means of observation functions and
by opacity ([3]). The observation functions can hide some system activities, can express unprecise ob-
servations and so on. The information flow will be expressed by opacity. A predicate is opaque if from
any observation of system activities an observer cannot deduce whether the predicate holds or it does
not hold. In general, opacity is undecidable, roughly speaking due to unlimited power of observational
functions and the corresponding predicate. To overcome this problem we model both the observation
function and the predicate by processes. We define conceptprocess defined security propertyand we
show that also many other security properties as NDC (see [8]), SNNI (see [7]),Secrecy(see [2], and
hence also Perfect Security Property, see [20]) are specialcases of this concept.

Traditional security properties are frequently criticized for being either too restrictive or too benev-
olent. For example, usually they consider a standard accesscontrol process to be insecure since there

∗Work supported by the grant VEGA 1/0688/10
†Address for correspondence: Institute of Informatics, Comenius University, Mlynska dolina, 842 48 Bratislava, Slovakia

2 D.P Gruska / Process Algebra Contexts and Security Properties

is always some (even very small) information flow for an attacker which tries to learn a password. To
overcome these disadvantages we propose some alternative security properties which are based on prob-
abilistic process alegebra and information theory. We showthat they can be again defined by suitable
timed probabilistic contexts. In this sense the presented work can be seen as a continuation of work
presented in [12] (probabilistic opacity) and [11] (quantification of security properties).

The paper is organized as follows. In Section 2 we describe the timed process algebra TPA which
will be used as a basic formalism. In Section 3 we present and investigate general notion of information
flow for different observation functions and security requirements. In Section 4 we define and study
process defined security properties which are in Section 5 extended to probabilistic setting.

2. Timed Process Algebra

In this section we define Timed Process Algebra, TPA for short. TPA is based on Milner’s CCS but the
special time actiont which expresses elapsing of (discrete) time is added. The presented language is
a slight simplification of the Timed Security Process Algebra introduced in [7]. We omit the explicit
idling operatorι used in tSPA and instead of this we allow implicit idling of processes. Hence processes
can perform either ”enforced idling” by performingt actions which are explicitly expressed in their
descriptions or ”voluntary idling”. But in the both cases internal communications have priority to action
t in the case of the parallel operator. Moreover we do not divide actions into private and public ones as it
is in tSPA. TPA differs also from the tCryptoSPA (see [10]). TPA does not use value passing and strictly
preservestime determinacyin case of choice operator+ what is not the case of tCryptoSPA.

To define the language TPA, we first assume a set of atomic action symbolsA not containing symbols
τ andt, and such that for everya ∈ A there existsa ∈ A anda = a. We defineAct = A ∪ {τ}, Actt =
Act∪{t}. We assume thata, b, . . . range overA, u, v, . . . range overAct, andx, y . . . range overActt.
Assume the signatureΣ =

⋃
n∈{0,1,2} Σn, where

Σ0 = {Nil}
Σ1 = {x. | x ∈ A ∪ {t}} ∪ {[S] | S is a relabeling function}

∪{\M | M ⊆ A}
Σ2 = {|,+}

with the agreement to write unary action operators in prefix form, the unary operators[S], \M in postfix
form, and the rest of operators in infix form. Relabeling functions, S : Actt → Actt are such that
S(a) = S(ā) for a ∈ A,S(τ) = τ andS(t) = t.

The set of TPA terms over the signatureΣ is defined by the following BNF notation:

P ::= X | op(P1, P2, . . . Pn) | µXP

whereX ∈ V ar, V ar is a set of process variables,P,P1, . . . Pn are TPA terms,µX− is the binding
construct,op ∈ Σ.

The set of CCS terms consists of TPA terms withoutt action. We will use an usual definition of
opened and closed terms whereµX is the only binding operator. Closed terms which are t-guarded (each
occurrence ofX is within some subexpressiont.A i.e. between any twot actions only finitely many non

D.P Gruska / Process Algebra Contexts and Security Properties 3

timed actions can be performed) are called TPA processes. Note thatNil will be often omitted from
processes descriptions and hence, for example, instead ofa.b.Nil we will write justa.b.

We give a structural operational semantics of terms by meansof labeled transition systems. The set
of terms represents a set of states, labels are actions fromActt. The transition relation→ is a subset of
TPA× Actt × TPA. We writeP

x→ P ′ instead of(P, x, P ′) ∈ → andP 6 x→ if there is noP ′ such that
P

x→ P ′. The meaning of the expressionP
x→ P ′ is that the termP can evolve toP ′ by performing

actionx, by P
x→ we will denote that there exists a termP ′ such thatP

x→ P ′. We define the transition
relation as the least relation satisfying the inference rules for CCS plus the following inference rules:

Nil
t→ Nil

A1
u.P

t→ u.P
A2

P
t→ P ′, Q

t→ Q′, P | Q 6 τ→
P | Q

t→ P ′ | Q′
Pa1

P
t→ P ′, Q

t→ Q′

P + Q
t→ P ′ + Q′

S

Here we mention the rules that are new with respect to CCS. AxiomsA1, A2 allow arbitrary idling.
Concurrent processes can idle only if there is no possibility of an internal communication (Pa1). A run
of time is deterministic (S). Regarding behavioral relations we will work with the timed version of weak
trace equivalence. Note that here we will use also a concept of observations which contain complete
information which includes alsoτ actions and not just actions fromA andt action as it is in [7]. For
s = x1.x2.xn, xi ∈ Actt we writeP

s→ instead ofP
x1→x2→ · · · xn→ and we say thats is a trace ofP .

The set of all traces ofP will be denoted byTr(P). We will write P
x⇒ P ′ iff P (

τ→)∗
x→ (

τ→)∗P ′ and
P

s⇒ instead ofP
x1⇒x2⇒ · · · xn⇒. By ǫ we will denote the empty sequence of actions, bySucc(P) we will

denote the set of all successors ofP andSort(P) = {x|P s.x−→ for somes ∈ Actt⋆ andx 6= τ}. If the
setSucc(P) is finite we say thatP is finite state.

Let s ∈ Actt⋆. By |s| we will denote the length ofs i.e. a number of action contained ins. By s|B
we will denote the sequence obtained froms by removing all actions not belonging toB. For example,
|s|{t}| denote a number of occurrences oft in s, i.e. time length ofs.

Definition 2.1. The set of weak timed traces of processP is defined as
Trw(P) = {s ∈ (A ∪ {t})⋆|∃P ′.P

s⇒ P ′}. Two processP andQ are weakly timed trace equiv-
alent (P ≈w Q) iff Trw(P) = Trw(Q) and processQ is a trace simulation ofP (P �w Q) iff
Trw(P) ⊆ Trw(Q).

3. Information Flow

To formalize information flow we do not divide actions into public and private ones at the system de-
scription level, as it is done for example in [10], but we use amore general concept of observation and
opacity. In [3] and [4] opacity was exploited for transitionsystems and Petri nets, respectively.

First we assume an observation function i.e. a functionO : Actt⋆ → Θ⋆, whereΘ is a set of
elements called observables (note that we have no other requirements onO except that it has to be total,
i.e. defined for every sequence of actions). Now suppose thatwe have some security property. This
might be an execution of one or more classified actions, an execution of actions in a particular classified

4 D.P Gruska / Process Algebra Contexts and Security Properties

order which should be kept hidden, etc. Suppose that this property is expressed by a predicateφ over
sequences. We would like to know whether an observer can deduce the validity of the propertyφ just by
observing sequences of actions fromActt⋆ performed by system of interest. The observer cannot deduce
the validity of φ if there are two sequencesw,w′ ∈ Actt⋆ such thatφ(w),¬φ(w′) and the sequences
cannot be distinguished by the observer i.e.obs(w) = obs(w′). We formalize this concept by the notion
of opacity.

Definition 3.1. (Opacity)
Given processP , a predicateφ over Actt⋆ is opaque w.r.t. the observation functionO if for every
sequencew, w ∈ Tr(P) such thatφ(w) holds andO(w) 6= ǫ, there exists a sequencew′, w′ ∈ Tr(P)
such that¬φ(w′) holds andO(w) = O(w′). The set of processes for which the predicateφ is opaque
with respect toO will be denoted byOpφ

O.

The notion of opacity is rather general. With its help many other security properties can be defined
(anonymity, non-interference etc. see [3]). On the other side, opacity is undecidable even for the simplest
possible observation function, namely for the constant one, and for finite state processes (see [15]). To
obtain not only decidable but mainly more realistic security property we will modify opacity in several
ways.

First, let us consider attackers which cannot see performing of internal actions but on the other
side they can always see elapsing of time. So we assume thatt ∈ Θ and if O(s) = o and s =
s1.t

n1 sk−1.t
nk−1.sk, si ∈ Act⋆ then o = o1.t

n1 ok−1.t
nk−1 .ok, oi ∈ (Θ \ {t})⋆. From now

on we will consider only this type of observational functionsO.
Undecidability of opacity is caused by considering very powerful attackers (very powerful observa-

tion functions) and predicates which are possibly very difficult to be computed. So to overcome these
obstacles, we will model both observational functions and predicates by processes.

Let us consider the set of atomic actionsA. By the ghost set of actions toA (we will denote it byAg)
we will call the set{ag|a ∈ A} (we assume thatA ∩ Ag = ∅). For a sequence of actions, s ∈ Actt⋆ we
will denote the corresponding sequence of ghost action bysg where every elementary action is replaced
by its ghost action. Note that actionst andτ have no a special ghost counterpart as well as a special
unique action

√
indicating a successful computation and which extends the set of actions(

√ ∈ Actt)
i.e. tg = t, τ g = τ,

√g =
√

. By Agg we will denote ghost actions ofAg i.e. Agg = (Ag)g.

Definition 3.2. The set of successful weak timed traces of processP is defined as

Trw
√(P) = {s.√|s ∈ (A ∪ {t})⋆ such thatP

s.
√
⇒}. Two processP andQ are successfully weakly

timed trace equivalent (P ≈w
√ Q) iff Trw

√(P) = Trw
√(Q) and processQ is a successful trace simu-

lation ofP (P �w
√ Q) iff Trw

√(P) ⊆ Trw
√(Q).

Definition 3.3. ProcessFφ is called process definition of predicateφ over sequences of actions if for
everys ∈ A⋆ such thatφ(s) it holds

P
s⇒ iff (P |Fφ) \ Sort(P)

sg.
√

⇒

D.P Gruska / Process Algebra Contexts and Security Properties 5

Example 3.1. Let φ(s) holds iff s = s1.h.s2, h ∈ H i.e. if s contains a private action from the set
private actionH. Then the following process

Fφ = µX.(
∑

x∈Actt\H
x.xg.X +

∑

x∈H

x.xg.F ′)

where
F ′ = µX.(

∑

x∈Actt

x.xg.X +
√

.Nil)

is the process definition of predicateφ.

Example 3.2. Let φn,m(s) for 1 < n < m holds iff s = s1.h.s2.h
′.s3, h, h′ ∈ H such thatn ≤

|s2|{t}| ≤ m and |s2|H | = ǫ, i.e. φn,m(s) holds if s contains two private actions fromH and time
elapsing between their occurrences is betweenn andm time units.

Then the following process

Fφ = µX.(
∑

x∈Actt

x.xg.X +
∑

x∈H

x.xg.F ′)

where
F ′ = µX.(

∑

x 6∈H

x.xg.X + t.F1),

Fi = µX.(
∑

x 6∈H

x.xg.X + t.Fi+1)

for i < n and
Fi = µX.(

∑

x 6∈H

x.xg.X + t.F ′
i+1)

for i = n,
F ′

i = µX.(
∑

x 6∈H

x.xg.X +
∑

x∈H

x.xg.F ′′ + t.F ′
i+1)

for i < m and

F ′′ = µX.(
∑

x.xg.X + t.X +
√

.Nil)

is the process definition of predicateφn,m.

Now we will define also observation functions by processes. Without loss of generality we can
suppose that the set of observablesO is a subset ofActt.

Definition 3.4. ProcessFO is called process definition of observation functionO on sequences of actions
if for every s ∈ Actt⋆ such thatO(s) = o it holds

P
s⇒ iff (P |FO) \ Sort(P)

og

⇒

6 D.P Gruska / Process Algebra Contexts and Security Properties

Example 3.3. Let O(s) is such that that all actions from the set of private actionsH are not seen i.e.
s|Actt\H ≈w O(s). Then the following process

FO = µX.
∑

x∈H

x.X

is the process definition of observation functionO.

Theorem 3.1. LetFO is process definition of observation functionO, Fφ andF¬φ are process definitions
of predicatesφ and¬φ, respectively. ThenP ∈ Opφ

O iff

(((P |Fφ) \ Sort(P))|FO) \ Sort(P g) �w
√ (((P |F¬φ) \ Sort(P))|FO) \ Sort(P g).

Proof:
Let P ∈ Opφ

O andFO is process definition of observation functionO, Fφ andF¬φ are process definitions
of predicatesφ and¬φ, respectively. Letw is a trace ofP such thatφ(w) holds andO(w) is non empty
sequence. Then there existsw′ (Definition 4.2) such that¬φ(w) holds andO(w) = O(w′). Then from
Definitions 3.3 and 3.4 we have(((P |Fφ)\Sort(P))|FO)\Sort(P g) �w

√ (((P |F¬φ)\Sort(P))|FO)\
Sort(P g). The oposite direction of the proof is similar. ⊓⊔

Note that sinceSort(P)) ∩ Sort(FO) = ∅ we have(((P |Fφ) \ Sort(P))|FO) \ Sort(P g) =
(P |Fφ|FO) \ (Sort(P g) ∪ Sort(P)).

4. Process defined information flow

Theorem 3.1 leads to the following concept of process definedsecurity. By context we mean a process
term with placeholderH. Formally, the set of TPA contexts over the signatureΣ is defined by the
following BNF notation:

C ::= H | X | op(C1, C2, . . . Cn) | µXC

whereX ∈ V ar, V ar is a set of process variables,C,C1, . . . Cn are TPA contexts,µX− is the binding
construct,op ∈ Σ andH is the place holder. ByC(P) we denote process obtained from process context
C and processP by substitutingP by place holderH, i.e. C(P) = C[P/H].

Definition 4.1. Security propertyS is process defined if there are two process contextsC1, C2 and a
relation between processesR such that for every processP ∈ TPA it holdsP ∈ S iff (C1(P), C1(P)) ∈
R.

Clearly, from Theorem 3.1 we see that opacity is process defined property for precess defined ob-
servation functionO and predicatesφ and¬φ, respectively. The corresponding contexts areC1 =
(((H|Fφ) \ A)|FO) \ Ag, C2 = (((H|F¬φ) \ A)|FO) \ Ag, respectively andR =�w

√.
The definition of opacity (see Definition 4.2) of predicateφ is asymmetric in the sense that ifφ(w)

does not hold than it is not required that there exists another trace for which it holds (in generalOpφ
O 6=

Op¬φ
O). This means that opacity says something to an intruder which tries to detect only validity ofφ (if

it is opaque, than validity cannot be detected) but not its non-validity i.e. it says nothing about predicate
¬φ. Hence we define strong variant of opacity.

D.P Gruska / Process Algebra Contexts and Security Properties 7

Definition 4.2. (Strong Opacity)
Given processP , a predicateφ overActt⋆ is strongly opaque w.r.t. the observation functionO if for every
sequencew, w ∈ Tr(P) such thatφ(w) holds andO(w) 6= ǫ, there exists a sequencew′, w′ ∈ Tr(P)
such that¬φ(w′) holds andO(w) = O(w′). Moreover, for for every sequencew, w ∈ Tr(P) such
that¬φ(w) holds andO(w) 6= ǫ, there exists a sequencew′, w′ ∈ Tr(P) such thatφ(w′) holds and
O(w) = O(w′). The set of processes for which the predicateφ is opaque with respect toO will be
denoted bysOpφ

O.

Theorem 4.1. Strong opacitysOpφ
O is process defined ifFO is process definition of observation function

O, Fφ andF¬φ are process definitions of predicatesφ and¬φ, respectively.

Proof:
The proof follows from the fact thatP ∈ sOpφ

O iff (((P |Fφ) \ Sort(P))|FO) \ Sort(P g) ≈w
√

(((P |F¬φ) \ Sort(P))|FO) \ Sort(P g). ⊓⊔

Now we show process definability of Strong NondeterministicNon-Interference (SNNI, for short).
We recall its definition (see [7]). Suppose that all actions are divided in two groups, namely public (low
level) actionsL and private (high level) actionsH i.e. A = L∪H,L∩H = ∅. Then processP has SNNI
property ifP \ H behaves likeP for which all high level actions are hidden for an observer. To express
this hiding we introduce hiding= operatorP/M,M ⊆ A, for which if P

a→ P ′ thenP/M
a→ P ′/M

whenevera 6∈ M ∪ M̄ andP/M
τ→ P ′/M whenevera ∈ M ∪ M̄ . Formal definition of SNNI follows.

Definition 4.3. Let P ∈ TPA. ThenP ∈ SNNI iff P \ H ≈w P/H.

Theorem 4.2. PropertySNNI is process defined.

Proof:
Let FO is the process defined in Example 3.3 and letC1 = (H) \ H, C2 = (H|FO) \ H andR =≈w. It
is easy to see thatP ∈ SNNI iff (C1(P), C2(P)) ∈ R. ⊓⊔

Note. Let us consider processesFφ defined in Example 3.1 andFO defined in Example 3.3. It is easy
to check that SNNI property can be seen as a special case of opacity for corresponding process defined
predicateφ and process defined observation functionO (see also [13]).

Non-Deducibility on Composition (NDC for short, see in [8])is another a widely studied security
property. It is based on the idea of checking the system against all high level potential interactions,
representing every possible high level process. System is NDC if for every high level userA, the low
level view of the behaviour ofP is not modified (in terms of trace equivalence) by the presence of A.
The idea of NDC can be formulated as follows.

Definition 4.4. (NDC)P ∈ NDC iff for every A,Sort(A) ⊆ H ∪ {τ, t}

(P |A) \ H ≈w P \ H.

Theorem 4.3. PropertyNDC is process defined.

8 D.P Gruska / Process Algebra Contexts and Security Properties

Proof:
Let C1 = (H|Top) \ H,C2 = (H) \ H, andR =≈w whereTop = µX.

∑
h∈H h.X. In [8] it is proved

that to show NDC property it is enough to check it with respectto so called the most powerful attacker
(Top). Then it holdsP ∈ NDC iff (C1(P), C2(P)) ∈ R, and hence propertyNDC is process defined.

⊓⊔

NDC property is based on an idea that processP communicates with (one) high level user or alter-
natively has high level inputs from the top level. By processdefined security we can refine this concept
by allowing more high level users nested in varioussecrecy, was introduced in [2] for labeled transition
systems. Now we repeat its definition slightly modified for processes. FunctionIP -inferable proper-
ties, is a function that, given a trace w, a propertyφ over traces and an equivalence relationR over
traces, represents the knowledge of the observer about the property φ from w. IP (w,φ,R) = ⊤
if ∀w′ : (w,w′) ∈ R =⇒ φ(w′), IP (w,φ,R) = ⊥ if ∀w′ : (w,w′) ∈ R =⇒ ¬φ(w′) and
IP (w,φ,R) = m otherwise, where⊤,⊥,m are three different symbols. Letϕ is predicate over traces
specifying a subset of traces of interest. Now we are ready toformalizesecrecy.

Definition 4.5. (Secrecy)Let P be a process,φ andϕ be two properties over traces. The propertyφ is
a secret inϕ for P w.r.t.R if for all w such thatϕ(w) holds, we haveIP (w,φ,R) = m.

It can be shown that secrecy can capture several standard information properties such as noninter-
ference or Perfect Security Property (see [20]). subprocesses (see [14]) ofP or thatP can send/receive
high level outputs/inputs on several nested levels not necessary on the top level. These situations could
be modeled by contexts of the formC = (HS1 . . . Sn|Top1| . . . T opn) whereSi are relabeling functions
andTopi processes similar toTop but exploiting a dedicated alphabet given bySi.

Another very general security property, calledsecrecy, was introduced in [2] for labeled transition
systems. Now we repeat its definition slightly modified for processes. FunctionIP -inferable properties,
is a function that, given a trace w, a propertyφ over traces and an equivalence relationR over traces,
represents the knowledge of the observer about the propertyφ from w. IP (w,φ,R) = ⊤ if ∀w′ :
(w,w′) ∈ R =⇒ φ(w′), IP (w,φ,R) = ⊥ if ∀w′ : (w,w′) ∈ R =⇒ ¬φ(w′) andIP (w,φ,R) = m
otherwise, where⊤,⊥ andm are three different symbols. Letϕ is predicate over traces specifying a
subset of traces of interest. Now we are ready to formalizesecrecy.

Definition 4.6. (Secrecy)Let P be a process,φ andϕ be two properties over traces. The propertyφ is
a secret inϕ for P w.r.t.R if for all w such thatϕ(w) holds, we haveIP (w,φ,R) = m.

It can be shown that secrecy can capture several standard information properties such as noninterfer-
ence or Perfect Security Property (see [20]).

Similarly to opacity if we can restrict secrecy to predicates φ,¬φ andϕ which are process defined
then secrecy becomes precess defined property.

Theorem 4.4. Secrecy is process defined if corresponding predicatesφ,¬φ andϕ which are process
defined.

D.P Gruska / Process Algebra Contexts and Security Properties 9

Proof:
Let Fφ, F¬φ, Fϕ are corresponding process defined predicatesφ,¬φ andϕ, respectively. Correspond-
ing contexts are as follows:C1 = (H|F ′

φ|F ′
ϕ) \ {Sort(Fφ) ∪ Sort(Fϕ))} andC2 = (H|F ′

¬φ|F ′
ϕ) \

{Sort(F¬φ) ∪ Sort(Fϕ)} where processes with comas use relabeled ghost alphabets (see Definition
3.3). ⊓⊔

Process definability of a security property allows us to use traditional tools developed for process
algebras. Moreover in many cases, for example for finite state contexts and processes, corresponding
security property is decidable. We repeat that opacity is not decidable even for finite state processes but
it is not true for process defined opacity.

Theorem 4.5. LetFO is process definition of observation functionO, Fφ andF¬φ are process definitions

of predicatesφ and¬φ, respectively andFO, Fφ andF¬φ are finite state processes. ThenP ∈ Opφ
O is

decidable for finite state processes.

Proof:
From Theorem 3.1 we know that the corresponding contexts arefinite state contexts.

⊓⊔

Note that similar theorem can be formulated also for strong opacity. By process defined security
concept we can also model many other non-standard security properties.

Example 4.1. Let us assume that an attacker cannot observe processes for longer thann time units from
its start. That means that in that case processes are considered to be secure if the attack cannot be
performed on sequencess shorter thann times units (|s|{t}| < n. We can model this situation by adding
the following process to the context given in Theorem 3.1.

FOn = tn.
√

.Nil.

Example 4.2. Let O(s) is such that that all actions from the set of private actionsH are not seen as in
Example 3.3 and moreover elapsing of one time unit can be seenwith unprecision up to three time units,
for example, due to some delays of an interconnection network.

Then the following process

FO = µX.
∑

x∈H

x.X + µX.
∑

x∈A\H
x.xg.X + µX.t.(X + t.t.X + t.t.t.X)

is the process definition of observation functionO.

It is easy to see that above mentioned properties - say of timelimited attacks and time unprecise
observations, are process defined.

A special class of process defined security properties are those ones which are defined by means of
relation which is a congruence. For such properties we have the following compositional theorem.

10 D.P Gruska / Process Algebra Contexts and Security Properties

Theorem 4.6. Let S is process defined security property such that the corresponding relationR is a
congruence. LetP ∈ S. Then we haveQ ∈ S for everyQ, (P,Q) ∈ R.

Proof:
Straightforward from definition of process definability andcongruency properties. ⊓⊔

Moreover, to check security of processes which are defined bymeans of one of usual process relations
we can exploit existing software tools.

Traditional security properties as opacity, SNNI or NDC arefrequently criticized to be either too
benevolent or too restrictive. In the former case they mightassign a process to be secure despite the
fact that practically its security is very limited and in thelater case, they refuse as insecure processes
generally considered to be secure. For example, usually they consider a standard access control process
to be insecure since there is always some (even very small) information flow for an attacker which tries
to learn a password - at least after each attempt a space of possible passwords is reduced. On the other
side they might accept a process as secure despite the fact that an attacker can learn, for example, a whole
private key except one bit and hence the size of the space of possible private keys is reduced to two.

There are several ways how to deal with the above mentioned situations in the framework of process
algebras. For example, we can modify concept of opacity in such a way that it will be defined not for
predicates over traces but over mappingsφ(s) → {0, . . . , k} (or predicates of many-valued logics) and
it will be required that for everys such thatφ(s) = n there existss′ such thatφ(s′) < n such that
O(s) = O(s′). Or we work with predicatesφ(s) = φ1(s)∧ · · · ∧φk(s) or φ(s) = φ1(s1)∧ · · · ∧φk(sk)
wheres = s1 . . . sk and evaluate opacity of eachφi separately. Each of predicatesφi may say, for
example, something abouti-th bit of a private key.

Alternatively, we use probabilistic process algebras to deal with the above mentioned criticism.

5. Probabilistic process defined information flow

Security properties as opacity, SNNI or NDC do not take into account neither attacks which take into
account changes of distribution of public outputs due to changes of private inputs nor security of sys-
tems based on very low probabilities for attacker to learn some private information. There are several
ways how to solve the above mentioned problems. To explain them, to discuss them and to suggest an
alternative approach, we need some preparatory work.

First we add probabilities to TPA calculus. We will follow alternating model (the approach presented
in [16]) which is neither reactive nor generative nor stratified (see [17]) but instead of that it based on
separation of probabilistic and nondeterministic transitions and states (see [12]). Probabilistic transitions
are not associated with performing of actions but labeled only with probabilities. In so called proba-
bilistic states a next transition is chosen according to probabilistic distribution. For example, process
a.(0.3.b.Nil ⊕ 0.7.(a.Nil + b.Nil)) can perform actiona and after that it reaches the probabilistic state
and from this state it can reach with probability 0.3 the state where only actionb can be performed or
with probability 0.7 it can reach the state where it can perform eithera or b.

Note that resented approach slightly differs from the Calculus for Communicating with Time and
Probabilities ([16]), where first probabilities are added to CCS and later time is added but without an
explicit special time action.

D.P Gruska / Process Algebra Contexts and Security Properties 11

Formally, to add probabilities to TPA calculus we introducea new operator
⊕

i∈I qi.Pi, qi being real
numbers in(0, 1] such that

∑
i∈I qi = 1. Processes which can perform as the first action probabilistic

transition will be called probabilistic processes or states (to stress thatP is non-probabilistic process
we will sometimes writePN if necessary). Hence we require that allPi processes in

⊕
i∈I qi.Pi and

in P1 + P2 are non-probabilistic ones. By pTPA we will denote the set ofall probabilistic and non-
probabilist processes and all definitions and notations forTPA processes are extended for pTPA ones.
We need new transition rules for pTPA processes. We mention only three rules which are significantly
different from those ones for TPA.

PN
1→ PN

A3 ⊕
i∈I qi.Pi

qi→ Pi

A4

P
q→ P ′, Q

r→ Q′

P | Q
q.r→ P ′ | Q′

Pa2

For probabilistic choice we have the ruleA4 and for a probabilistic transition of two processes
running in parallel we have the rulePa2. The technical ruleA3 enables parallel run of probabilistic

and non-probabilistic processes by allowing to non-probabilistic processes to perform
1→ transition and

hence the rulePa2 could be applied.
Introducing probabilities to process algebras usually causes several technical complications. For ex-

ample, an application of the restriction operator to probabilistic process may lead to unwanted deadlock
states or to a situation when a sum of probabilities of all outgoing transitions is less than 1. A normaliza-
tion is usually applied to overcome similar situations. We do not need to resolve such situations on the
level of pTPA calculus since we will use only relative probabilities of sets of computations. To compute
these probabilities normalization will be also exploited but only as the very last step.

To add probabilities to traces one has to assign to each possible path of computation resulting to a
given sequence of action corresponding probability and to sum up all of them. There are several ways
how to do that we refer reader to [18, 9, 12].

Some security properties which are defined in the previous section could be directly and meaning-
fully translated to probabilistic setting. For example, ifwe take probabilistic processes and probabilistic
version of the weak trace equivalence (≈pw) which require that process have the same traces with the
same probabilities we obtain probabilistic version of SNNIand NDC property.

Definition 5.1. Let P ∈ pTPA. ThenP ∈ pSNNI iff P \ H ≈pw P/H.

Definition 5.2. (pNDC)P ∈ pNDC iff for every A ∈ pTPA,Sort(A) ⊆ H ∪ {τ, t}

(P |A) \ H ≈pw P \ H.

Security property pSNNI says that an observer which can observe processP for a long time cannot
distinguish whether private actions are not sees or are restricted.

Security property pNDC has also a natural motivation - processP has this property if private process
A cannot influence not only set of possible traces but also their distribution.

12 D.P Gruska / Process Algebra Contexts and Security Properties

Note that property pNDC is defined also for non probabilisticproperties. Moreover, it is easy to see
that for everyP,P ∈ TPA we have that ifP ∈ pNDC thenP ∈ NDC.

In general, we define probabilistically process defined security properties as follows.

Definition 5.3. Security propertyS is probabilistically process defined if there are two probabilistic
process contextsCp

1 , Cp
2 and a relation between probabilistic processesRp such that for every process

P ∈ pTPA it holdsP ∈ S iff (Cp
1 (P), Cp

2 (P)) ∈ Rp.

Note that probabilistic process definability can be appliedalso on non probabilistic processes. By
choosing either suitable probabilistic contexts or by suitable probabilistic process relation we can model
many naturally motivated security notions. For example, wecan choose some probabilistic process
relation to admit some level of tolerance behind which an attacker cannot observe processes (see for
example ([1, 12]). We can model unprecise observations or observations which might have some known
distribution of errors etc.

Example 5.1. LetO(s) be an observation function from Example 4.2 with probabilities associated with
unprecise observations. Then the following timed probabilistic process

FO = µX.
∑

x∈H

x.X + µX.
∑

x∈A\H
x.xg.X + µX.t.(0.7.X ⊕ 0.2.t.t.X ⊕ 0.1.t.t.t.X)

is the probabilistic process definition of observation function O.

Another approach how to add some quantities to security properties is represented by various mea-
sures of an amount of information flow. To express quantity ofinformation flow we will exploit Schan-
non information theory (see [19]). LetX be a discrete random variable and letx ranges over the set
of values whichX may take. Byp(x) we will denote probability thatX takes the valuex. Self-
information (or surprisal) is a measure of the information content associated with the outcome of the
random variableX. It is defined asH(x) = logb

1
p(x) . We putH(x) = ∞ if p(x) = 0. The infor-

mation entropy (also called self-information or a measure of uncertainty) of the variableX is denoted
H(X) and is defined asH(X) =

∑
x p(x). logb

1
p(x) . We definep(x). logb

1
p(x) = 0 if p(x) = 0.

We will work with the baseb of logb equal to 2 and hence the unit of the information entropy will
be one bit. Sometimes we will writeH(p1, . . . , pn) instead ofH(X) if probabilities of values ofX
arep1, . . . , pn. Given two random variablesX andY , the mutual information between them, written
I(X;Y), is defined asI(X;Y) =

∑
x

∑
y p(x, y). log p(x,y)

p(x).p(y) . It can be easily shown thatI(X;Y) =

H(X) +H(Y)−H(X,Y) = H(X)−H(X|Y) = H(Y)−H(Y |X). Conditional entropy ofX given
knowledge ofY is defined asH(X|Y) =

∑
y p(y).H(X|Y = y), and conditional mutual information

betweenX andY given knowledge ofZ is defined asI(X;Y |Z) = H(Y |Z) −H(Y |X,Z).

Information theory can be used to measure an amount of information which can attacker gain (see [5]
and [11] for quantification of information flow in imperativelanguages and for process algebras, respec-
tively). Information flow is quantified as a surprisal of value of private variable or predicates validity or
its entropy. Alternatively, it can be quantified as a conditional mutual information flow between private
and public inputs (Hin, Lin) and the resulting distribution of a corresponding public output (Lout) as
I(Hin, Lout|Lin) or as difference between entropy ofHin before and after ”attack” i.e. observingLout

D.P Gruska / Process Algebra Contexts and Security Properties 13

knowingLin. That means asH(Hin|Lin)−H(Hin|Lin, Lout). In all this cases it is not assumed that an
attacker might have some belief about private data or actions what is not always the case.

Suppose that an intruder tries to learn a secrete password. (S)he starts an attack with a prebelief
that the password is very likely P. This prebelief is given byinformation received from past experiences,
obtained form some cooperator etc. Say that there are 100 possible passwords and the attackers prebelief
B is expressed by the following probability distributionp(P) = 0.9 andp(x) = 1/990 for x 6= P .
Hence entropy ofB, H(B) is about 1. Suppose that the attacker tries as the first the passwordP and it
fails. After that the attacker has to change his/her prebelief. Now a new beliefB′ is such that all possible
password have the equal probability1/99 andH(B′) is roughly seven times higher. Hence according to
traditional view there is no information flow since uncertainty is higher after an attack what contradicts
our intuition (in [6] this problem is formalized for a simpleimperative language).

Here we formalize this concept in the presented framework. Suppose that attacker beliefs is expressed
by probabilistic processA which can perform only sequences of public input actionl1 . . . ln of lengthn
each with a probability corresponding to attackers belief.On the other side letG be similar process but
with probabilities for each sequence to be equal. By similartechnique as it was used in Examples 3.1 and
3.3 we can force process to perform always the whole sequenceof inputs. Then there is an information
flow for attacker with beliefA if uncertainty ofφ under observationo for (P |A) \ Lin is lower than for
(P |G) \ Lin. This can be expressed by contexts andC ′

1 = C1((H|A) \ Lin), C ′
2 = C2((H|G) \ Lin),

C1, C2 being context from opacity definition (see Theorem 3.1) and relation�pw
√ on processes such

thatP �pw
√ Q if for every weak trace ofP there is a weak trace ofQ such that corresponding overall

probabilities are not higher forQ. Hence the property is probabilistic process defined.

6. Conclusions

We have presented the conceptprocess defined security propertyand we have showed that many of
already studied information flow based security properties(NDC, SNNI, Secrecy, Perfect Security Prop-
erty) can be seen as its special cases. This concept offers not only an uniform framework for security
theory but can be used to model more elaborated security properties than traditional ones and moreover,
by careful choice of process contexts and process relation,we can obtain properties which can be effec-
tively checked (note that in general, opacity is undecidable). By this concept we can also naturally model
security with respect to limited time length of an attack, with a limited number of attempts to perform an
attack and so on.

Moreover, by exploiting probabilistic process algebra contexts we can model various probabilistic
security properties and quantify an amount of information flow as well.

The presented approach allows us to use also other types of process algebras enriched by operators
expressing also other properties (space, distribution, networking architecture, processor or power con-
sumption and so on) and in this way also other types of attackswhich exploit these information to detect
information flow through various covert channels can be described.

Process defined security limits us to predicates and observation functions (i.e. observers) which can
be expressed by process algebra processes. In fact, this restriction does not represent any real limitation.
Practically all predicates and observation function of interest (used in known attacks) can be described
by finite state processes and there is even no need to exploit full universal power of process algebras. In

14 D.P Gruska / Process Algebra Contexts and Security Properties

other words, it has no practical meaning to consider predicates and observation functions which cannot
be computed.

References

[1] A. Aldini: Probabilistic Information Flow in a Process Algebra. CONCUR’01, Springer LNCS 2154, 2001.

[2] R. Alur, P. Černý and S. Zdancewic: Preserving Secrecy under Refinement. In Proc. of 33rd International
Colloquium on Automata, Languages and Programming (ICALP), 2006.

[3] J. Bryans, M. Koutny, L. Mazare and P. Ryan: Opacity generalised to transition systems. International
Journal of Information Security, Vol. 7, No. 6, 2008.

[4] J. Bryans, M. Koutny and P. Ryan: Modelling non-deducibility using Petri Nets. Proc. of the 2nd Interna-
tional Workshop on Security Issues with Petri Nets and otherComputational Models, 2004.

[5] D. Clark, S. Hunt and P. Malacaria: A Static Analysis for Quantifying the Information Flow in a Simple
Imperative Programming Language. The Journal of Computer Security, 15(3). 2007.

[6] M.R. Clarkson, A.C. Myers, F.B. Schneider: QuantifyingInformation Flow with Beliefs. Journal of Com-
puter Security, to appear, 2009.

[7] R. Focardi, R. Gorrieri, and F. Martinelli: Informationflow analysis in a discrete-time process algebra. Proc.
13th Computer Security Foundation Workshop, IEEE Computer Society Press, 2000.

[8] R. Focardi, R. Gorrieri, and F. Martinelli: Real-Time information flow analysis. IEEE Journal on Selected
Areas in Communications 21 (2003).

[9] R. J. van Glabbeek, S. A. Smolka and B. Steffen: Reactive,Generative and Stratified Models of Probabilistic
Processes Inf. Comput. 121(1): 59-80, 1995.

[10] R. Gorrieri and F. Martinelli: A simple framework for real-time cryptographic protocol analysis with com-
positional proof rules. Science of Computer Programming archive Volume 50, Issue 1-3, 2004.

[11] D.P. Gruska: Quantifying Security for Timed Process Algebras, Fundamenta Informaticae, vol. 93, Numbers
1-3, 2009.

[12] D.P. Gruska: Probabilistic Information Flow Security. Fundamenta Informaticae, vol. 85, Numbers 1-4,
2008.

[13] D.P. Gruska: Observation Based System Security, Fundamenta Informaticae, 79 (2007), Numbers 3-4, pp.
335-346, 2007.

[14] D.P. Gruska: Network Information Flow, Fundamenta Informaticae, Volume 72, Numbers 1-3, pp 167-180,
2006.

[15] D.P. Gruska: Information Flow in Timing Attacks. Proceedings CS&P’04, 2004.

[16] H. Hansson and B. Jonsson: A Calculus for CommunicatingSystems with Time and Probabilities. In Pro-
ceedings of 11th IEEE Real - Time Systems Symposium, Orlando, 1990.

[17] N. López and Núñez: An Overview of Probabilistic Process Algebras and their Equivalences. In Validation
of Stochastic Systems, LNCS 2925, Springer-Verlag, Berlin, 2004.

[18] R. Segala and N. Lynch: Probabilistic Simulations for Probabilistic Processes. Nord. J. Comput. 2(2): 250-
273, 1995.

[19] C. E. Shannon: A mathematical theory of communication.Bell System Technical Journal, vol. 27, 1948.

[20] A. Zakinthinos and E. S. Lee: A general theory of security properties. In Proc. of SP’97, 1997.

