
Faculty of Mathematics, Physics, and Informatics

Comenius University, Bratislava

Logic program semantics via an
argumentation semantics.

Monika Adamová, Ján Šefránek

TR-2012-033

0101001010
11011101 0 111001

011
0
0

1

Technical Reports in Informatics

Logic program semantcs via an argumentation
semantics

Monika Adamová, Ján Šefránek

Comenius University, Bratislava, Slovakia, monika.adamova@gmail.com;
sefranek@ii.fmph.uniba.sk

Abstract. There are various semantics designed for argumentation frame-
works. They enable to assign a meaning e.g. to odd-length cycles. Our
main motivation is to transfer semantics proposed by Baroni, Giacomin
and Guida for argumentation frameworks with odd-length cycles to logic
programs with odd-length cycles through default negation. The devel-
oped construction is even stronger. For a given logic program an argu-
mentation framework is defined. The construction enables to transfer
each semantics of the resulting argumentation framework to a semantics
of the given logic program.

Keywords: argumentation framework; extension; logic program; odd cycle;
semantics

1 Introduction

Relations between abstract argumentation frameworks and logic programs were
studied since the fundamental paper by Dung [10]. Among typical research prob-
lems are, e.g., a characterization of extensions of abstract argumentation frame-
work in terms of answer sets or other semantics of logic programs, a construction
of new semantics of logic programs, based or inspired by extensions of argumen-
tation frameworks, encoding extensions in answer set programming.

Our main motivation is to transfer semantics proposed in [3] for argumen-
tation frameworks with odd-length cycles to logic programs with odd-length
cycles through default negation. According to our knowledge, only CF2 exten-
sions of [3], were studied from different logic programming points of view, see,
e.g., [14,17]. In [14] an ASP-encoding of CF2 is presented and in [17] a charac-
terization of CF2 in terms of answer set models is proposed.

Our goal is to propose some new semantics of logic programs via transfer-
ring semantics of argumentation frameworks. We propose a uniform method,
which for a given logic program transfers arbitrary argumentation semantics to
a semantics of the logic program. The method enables to define for the given
logic program a corresponding argumentation framework. As the next step, an
arbitrary semantics of the resulting argumentation framework is transferred to
a semantics of the given logic program. The main contribution of our paper is
this uniform method with a rather interesting comoputational properties.

The paper is structured as follows. Basics of SCC-recursive semantics of [3]
is sketched after technical preliminaries. Then, in Section 4, a straightforward
transfer of an argumentation semantics to a logic program semantics is described.
However, the presented solution is counterintuitive for some cases. An improved
method, based on unfolded form of a given program is presented in Section
5. After that, in Section 6, our method is compared to methods of [10] and [4].
Possibilties of semantic characterization of logic programs with odd-length cycles
through default negation are disccussed, too.

A representation of an argumentation framework A by a logic program P is
described in Section 6. It is shown that for an arbitrary argumentation semantics
holds that extensions of the original argumentation framework A coincide with
extensions of the argumentation framework constructed for P using our method.
Finally, related work is overviewed and main contributions, open problems and
future goals are summarized in Conclusions.

This paper is an essentially modified version of WLP2011-paper [2].

2 Preliminaries

Some basic notions of argumentation frameworks and logic programs are intro-
duced in this section.

Argumentation frameworks An argumentation framework [10] is a pair AF =
(AR, atatcks), where AR is a set (of arguments) and attacks ⊆ AR × AR is a
binary relation. Let be a, b ∈ AR; if (a, b) ∈ atatcks, it is said that a attacks b.

Let be S ⊆ AR. It is said that S is conflict-free if for no a, b ∈ S holds
(a, b) ∈ attacks.

A set of arguments S ⊆ AR attacks a ∈ AR iff there is b ∈ S s.t. (b, a) ∈
attacks.

A conflict-free set of arguments S is admissible in AF iff for each a ∈ S holds:
if there is b ∈ AR s.t. (b, a) ∈ attacks, then S attacks b. An admissible set of
arguments counterattacks each attack against its members.

Dung defined some semantic characterizations (extensions) of argumentation
frameworks as sets of conflict-free and admissible arguments, which satisfy also
some other conditions.

A preferred extension of AF is a maximal admissible set in AF . A conflict-free
S ⊆ AR is a stable extension of AF iff S attacks each a ∈ AR \ S.

The characteristic function FAF of an argumentation framework AF assigns
sets of arguments to sets of arguments, where FAF (S) = {a ∈ AR | ∀b ∈
AR b attacks a⇒ S attacks b}.

The grounded extension of an argumentation framework AF is the least fixed
point of FAF (FAF is monotonic).

A complete extension is an admissible set S of arguments s.t. each argument,
which is acceptable with respect to S, belongs to S.

A set of extensions assigned by a semantics S to an argumentation framework
AF is denoted by ES(AF). A semantics S of AF is a mapping σS , which assigns

ES(AF) to AF . We consider only coflict-free semantics in the following sense: if
S is a semantics, M ∈ ES(AF), then M is a conflict-free set of arguments.

Logic programs Only propositional normal logic programs are considered in this
paper. Let A be a set of atoms. The set of default literals is D = not A =
{not A | A ∈ A}. A literal is an atom or a default literal. The set of all literals
is denoted by L. A rule r is an expression of the form

A← A1, . . . , Ak,not B1, . . . ,not Bm; where k ≥ 0,m ≥ 0 (1)

A is called the head of the rule and denoted by head(r). The set of literals
{A1, . . . , Ak,not B1, . . . ,not Bm} is called the body of r and denoted by body(r).
{A1, . . . , Ak}, called the positive part of the body, is denoted by body+(r) and
{B1, . . . , Bm} is denoted by body−(r). Notice that body−(r) differs from the
negative part {not B1, . . . ,not Bm} of the body. If R is a set of rules, then
head(R) = {head(r) | r ∈ R}, body+(R) = {body+(r) | r ∈ R}, body−(R) =
{body−(r) | r ∈ R}.

A (normal) program is a finite set of rules. We will often use only the term
program.

An interpretation is a consistent subset of L, i.e., I ⊆ L s.t. for no atom A
holds that {A,not A} ⊆ I. An interprettion I is total iff for each atom A either
A ∈ I or not A ∈ I. A rule r is satisfied in an interpretation I iff head(r) ∈ I
whenever body(r) ⊆ I. An interpretation I is a model of P iff each rule r ∈ P is
satisfied in I.

Our method transfers an argumentation semantics to a logic program seman-
tics. The logic program semantics is specified in terms of sets of atoms derivable
in the corresponding logic program. We follow the approach of Dimopoulos and
Torres [7]: the derivation dependends on a set of default literals.1 In the next
paragraphs we will adapt some basic definitions from [7].

An assumption is a default literal. Let ∆ be a set of assumptions. ∆;P

is a
set of atoms, derivable from ∆ w.r.t. a program P ; here is a precise definition:

Let a set of assumptions ∆ and a program P be given. The program P∆ is
obtained from P by deleting elements of ∆ from the bodies of the rules. The
program P+

∆ is obtained from P∆ by deleting all rules with bodies containing
assumptions. Finally, ∆;P = {A ∈ A | P+

∆ |= A}).
A set of assumptions ∆ is conflict-free w.r.t. a program P iff ∆ ∪ ∆;P is

an interpretation. This view on interpretations enables an easy connection to
the approach and results of [4] and a comfortable switching from two-valued to
three-valued interprattaions and back.

It is said that an atom A is derived from ∆ using rules of P iff A ∈ ∆;P

.
Stable model semantics of logic programs play a background role in our paper,

so, we introduce a definition of stable model. An interpretation S = ∆ ∪∆;P

is a stable model of P iff S is total interpretation [7].

If P is an empty program, then an empty interpretation ∆∪∆;P

is its stable

model, i.e., both ∆ and ∆;P

are empty sets of literals.

1 A similar viewpoint is accepted also in [10] and [4].

3 SCC-recursive semantics

Assymmetries in handling even and odd cycles in argumentation semantics are
analysed in [3]. We present only a sketchy view of their approach. An argumenta-
tion framework AF may be conceived as an oriented graph GAF with arguments
as vertices and the attack relation as the set of edges.

Example 1 Consider AF = ({a, b, c}, {(a, b), (b, c), (c, a)}). The graph repre-
sentation of AF contains an odd-length cycle.

Stable semantics does not assign an extension to such argumentation frame-
work. However, there are two stable extensions for a cycle of length four.

Assymetries between semantic treatment of odd-length and even-length cycles
are present also in other “classic” argumentation semantics proposed in [10].2

This motivated the research and solutions of [3]. 2

A general recursive schema for argumentation semantics is proposed in [3].
The approach si based on strongly connected components.

Definition 1 Let an argumentation framework AF = 〈AR, attacks〉 be given.
A binary relation of path equivalence, denoted by PEAF ⊆ (AR×AR), is defined
as follows.

– ∀a ∈ AR, (a, a) ∈ PEAF ,
– ∀a 6= b ∈ AR, (a, b) ∈ PEAF iff there is a path from a to b and a path from
b to a.

The strongly connected components of AF are the equivalence classes of ar-
guments (vertices) under the relation of path-equivalence. The set of the strongly
connected components of AF is denoted by SCCSAF . 2

If we consider SCCSAF then the graph GAF may be viewed as an acyclic
one. Recursive semantics over SCCSAF are defined in a constructive way –
an incremental process of adding arguments into an extension is specified. A
symmetric handling of odd and even cycles is enabled by this construction.

Notions of parents and ancestors for graphs with strongly connected com-
ponets are defined in an obvious way. Initial components (components without
parents) provide a basis for a construction of an extension. We start at the initial
component and proceed via oriented edges to next components. If we construct
an extension E and a component C is currently processed, the process consists in
a choice of a subset of C, i.e. a choice of E∩C (according to the given semantics
– the semantics specifies how choices depend on choices made in ancestors of
C). A base function is assumed, which is applied to argumentation frameworks
with exactly one component and it characterizes a particular argumentation
semantics.

2 We will use the attribute “classiic” for admissible, preferred, stable, grounded and
complete semantics.

A notion of SCC-recursive argumentation semantics formalizes the intuitions
presented above. SCC-recursive characterization of traditional semantics is pro-
vided. Finally, some new semantics, AD1, AD2, CF1 and CF2, are defined in
[3].

AD1 and AD2 extensions preserve the property of admissibility. However, the
requirement of maximality is relaxed, so this solution is different as compared
to the preferred semantics. An alternative is not to require admissibility of sets
of arguments and insist only on conflict-freeness. Maximal conflict-free sets of
arguments are selected as extensions in semantics CF1 and CF2. For details and
differences see [3]. ASP-encodings of AD1, AD2, CF1 and CF2 are presented in
[1].

4 Transfer of argumentation semantics

Basic ideas of our method are explained intuitively as follows. We build an ar-
gumentation framework over the rules of a logic program. Rules play the role
of arguments. An attack relation over such arguments is introduced. After that
some arguments (i.e., rules) are accepted/rejected on the basis of a given ar-
gumentation semantics: accepted rules form an extension of the argumentation
semantics. A corresponding semantics for logic program is introduced as a set of
literals derivable from accepted rules. Note that this method enables a transfer
of an arbitrary argumentation semantics to the given logic program.

An argumentation framework over the rules of a program P is defined in
the following. After that we will proceed towards derivations in P , based on an
argumentation semantics.

Definition 2 Let a program P be given. Then an argumentation framework
over P is AFP = 〈AR, attacks〉, where

AR = {r ∈ P} and attacks = {(r1, r2) | A = head(r1), body+(r1) = ∅, A ∈
body−(r2)}. 2

Example 2 Let be P = {r1 : a ←; r2 : b ← not a.}. Then attacks relation of
AFP is {(r1, r2)}.

If P = {r1 : a ← not b. r2 : b ← not a.}, then attacks = {(r1, r2), (r2, r1)}.
2

Now, let us introduce the derivations. They are used for computing sets of
atoms, which form a semantic counterpart of a selected argumentation semantics
for a given logic programs.

Let a program P be given, AFP be an argumentation framework over P .
Suppose that a set of rules R ⊆ P is an extension according to an argumentation
semantics S. Some intuitions in the next example.

Example 3 Let a program P = {r1 : a ←, r2 : b ← not a, r3 : c ← not b, r4 :
d← not c} be given.

Our method consists of four steps. First, an argumentation framework AFP
over P is constructed. Second, a set of extensions of AFP (i.e. a set of sets of
rules of P) according to a chosen argumentation semantisc S is computed. Third,
for each set of rules R is computed a set A of atoms, well-defined consequences
of R. Finally, if R and A are consistent in a well-defined sense (our goal is to
derive from R only atoms which do not occur as negated in the bodies of rules
in R), then A represents a semantic counterpart of the chosen argumentation
semantics for the logic program P .

Follow it on our example. Precise definitions are introuced after the example.
We get AFP = ({r1, r2, r3, r4}, {(r1, r2), (r2, r3), (r3, r4)}). Consider the pre-

ferred semantics. The only preferred extension of AFP is the set of rules R =
{r1, r3}. The set of atoms A = {a, c} can be derived from R. It is important
to verify that R and A are consistent in the following sense: neither not a, nor
not c occur in body−(R). Finally, if the consistency is verified, we decide that
A = {a, c} is derived in P according to the preferred semantics and it represents
a counterpart of preferred semantics of the logic program P . 2

We now proceed to formal definitions.

Definition 3 A set of rules R ⊆ P is enabled in a program P by an argumenta-
tion semantics S iff R ∈ ES(AFP). If R satisfies this condition, it is denoted by
Rule inPS (or by a shorthand Rule in, if a given semantics and a given program
are clear from the context). 2

A set of rules R (Rule inPS) is enabled by S according to Definition 3, if
R is an S-extension of AFP . The following definition introduces an importatnt
notion of a set of atoms consistent with a set of rules.

Definition 4 Let M be an arbitrary set of atoms and R ⊆ P be an arbitrary
subset of a program P .

It is said that M is consistent with R iff ∀A ∈M ¬∃r ∈ R A ∈ body−(r). 2

Now, a fundamental task is to point out a way from rules enabled by an argu-
mentation semantics to a corresponding set of atoms. The set of atoms, denoted
by In ASPS (or simply In AS), is a candidate for a semantic characterization of
the given logic program P .

Definition 5 Let AFP be an argumentation framework over a program P , S be
an argumentation semantics of AFP and Rule inPS be a set of rules of P enabled
by the semantics S.

Then In ASPS is the least set of atoms {A | ∃r ∈ Rule inPS , head(r) = A,∀b ∈
body+(r) : b ∈ In ASPS }. 2

Definition 5 specifies how to compute In AS. First, head(r) is included into
In AS for each r ∈ Rule inPS s.t. body+(r) = ∅. After that In AS is iteratively
recomputed for all r ∈ Rule inPS with non-empty body+(r). Notice that this is

a process of TRule inP
S

iteration applied to a set of assumptions (a set of default

literals).
Finally, it is necessary to use consistent In ASPS in order to define a sound

semantic characterization of the given logic program P . This characterization is
called the set of atoms derived in P according to a semantics S.

Definition 6 If In ASPS is consistent with Rule inPS , then it is said that In ASPS
is the set of atoms derived in P according to semantics S. 2

Example 4 Remind Example 3. We will analyze it in terms of Definitions 3 –
6.

P = {r1 : a←, r2 : b← not a, r3 : c← not b, r4 : d← not c}.
AFP = ({r1, r2, r3, r4}, {(r1, r2), (r2, r3), (r3, r4)}).

ES(AFP) = {{r1, r3}}, where S is the preferred semantics. It means, {r1, r3} is
the only set of rules, enabled by the preferred semantics according to Definition
3.

In AS = {a, c} according to Definition 5. The set of atoms {a, c} is consis-
tent with the set of rules {r1, r3} according to the Definition 4. Finally, according
to Definition 6 is {a, c} derived in P according to the preferred semantics. 2

The next example shows why the condition of consistency is important.

Example 5 Let P be {r1 : a ← b, r2 : b ← not a}. Then AFP = ({a, b}, ∅),
preferred extension of AFP is P and the set of consequences of P according to
Definition 5 is In AS = {a, b}. But In AS is inconsistent with P .

It is counterintuitive to consider {a, b} as a semnatic characterization of P .
The drawbacks of the presented set of definitions are analyzed below. 2

Derivation of atoms according to Definition 6 coincides with the definition of
derivation in Section 2.

Proposition 1 Let an argumentation semantics S be given. Let be R = Rule inS.
A set of atoms derived in P according to the semantics S is ∆;R for some ∆.

Proof:
Let be R = Rule inS and In AS be the corresponding derived set of atoms.

Suppose that ∆ = {not A | ∃r ∈ R A ∈ body−(r)}. It holds that B ∈ ∆;R

iff R+
∆ |= B. Obviously, R+

∆ |= B holds iff B ∈ In AS. 2
The attacking argument in the attack relation is constrained in this section

to the rules with non-empty body+(r). An advantage of this decision is that
the attack relation is recognizable on syntactic level. No additional computa-
tion is needed: attacks of rules with non-empty body+(r) are conditional, they
depend on a derivation of positive literals in body+(r). On the other hand, this
decision does not consider hidden attacks and leads to some counterintuitive
consequences, see the next example. The bug is improved in the next section.

Example 6 Let P be {r1 : a ← not b, r2 : b ← c,not d.}, r3 : c ← .}, then
in AFP is attacks = ∅. If S is the preferred semantics, then {{r1, r2, r3}} =
ES(AFP), P = Rule inPS is enabled by the preferred semantics.

Further, it holds that In ASPS = {a, b, c} according to Definition 5. But
In ASPS is not consistent with P = Rule inS , hence no atom is derived in P
according to the preferred semantics.

Obviously, {r2, r3} could be an intuitive preferred extension. It means that
our construction (our decision about the attacks relation) do not generate all
intuitive semantic characterizations of a logic program corresponding to an ar-
gumentation semantics. 2

Examples 5 and 6 show that there are logic programs without a semantic
counterpart of a preferred extension of argumentation framework over those
programs.This is a feature which does not correspond to the fact that every
argumentation framework has a preferred extension.

Similalry, note that stable extensions of AFP are not in general stable models
of P .

Example 7 Consider the program P = {r1 : a← p,not b, r2 : b← q,not a, r3 :
p←}.

The stable model of P is {p, a}, but a semantic counterpart of the stable
extension of AFP does not exist. Rules P = {r1, r2, r3} form a stable extension
of AFP , but In AS = {a, b, p} is not consistent with Rule in = P , 2

This observation is a consequence of the given design decision concerning the
attack relation. We are going to solve the problem in the next section.

5 Transfer via unfolding

The approach described in the previous section is insensitive w.r.t. hidden attacks
between rules. Examples 6 and 7 indicate that this is a bug, if we want an
intuitively satisfying transfer of an argumentation semantics to a corresponding
logic program semantics. Hidden attacks of rules with non-empty positive parts
of bodies can be uncovered by the unfolding operation, see the next example.3

Example 8 Remind Example 6 with P = {r1 : a← not b, r2 : b← c,not d. r3 :
c← .}. A buggy behaviour of the approach of the previous section was illustrated
on AFP .

Unfolded form (equivalent) of P is the program Q = {q1 : a ← not b; q2 :
b← not d; q3 : c←},

Consider the argumentation framework over Q, AFQ = ({q1, q2, q3}, {(q2, q1)}).
Hence, the (only) preferred extension of AFQ is R = {q2, q3}. The (only) stable
model of R is {b, c}.
3 We are inspired by a use of unfolding in [13,19]. Unffolding is used there for a

specification of preferred answer sets.

We are aiming to propose {b, c} as the semantic counterpart of the preferred
semantics in P . To that end we continue with some basic facts about unfolding
and then proceed to our construction and its evaluation. 2

We will use the term unfolding for a transformation method based on the
Principle of Generalized Partial Evaluation (GPPE) [8].

Definition 7 (Unfolding) Let a program P and an atom A be given. Let Q be
the set of all rules qj ∈ P, j = 1, . . . , n s.t. A ∈ body+(qj) for each j. Consider
the set of all rules ri, i = 1, . . . , k s.t. head(ri) = A.

Then we define the program P ′ = (P \ Q) ∪ {head(qj) ← Bji , (body−(ri) ∪
body−(qj)) | i ∈ {1, . . . , k}, j ∈ {1, . . . , n}, where Bji = (body+(qj) \ A) ∪
body+(ri)}.

It is said that P ′ is the result of an unfolding transformation of P . 2

Definition 8 (Unfolding sequence, unfolded program) If σ = 〈P1, . . . , Pm〉
is a sequence of logic programs s.t. for each i < m holds that Pi+1 is the result
of unfolding transformation of Pi, then σ is called an unfolding sequence.

If P is a program s.t. there is no unfolding sequence of length greater than
1 with P as the first member, it is said that P is an unfolded program. If Q is
an unfolded program and there is an unfolding sequence 〈P, . . . , Q〉, then Q is an
unfolded form of P . 2

Let SM(Q) be the set of all stable models of a program Q, If P ′ is an unfolded
form of P then SM(P) = SM(P ′), see [8].4

Remark 1 Unfolded programs may contain tautological rules and rules with
such atonms in positive parts of bodies, which do not occur in heads of the pro-
gram. If we use another notion of unfolded program, reduced by some elimination
principles of [5] (compare with loop detection of [9]), we may get a more efficient
computation of an unfolded equivalent of a given program. However,this is not
in focus of our paper. 2

We propose a construction as follows. A starting point is a logic program P
and our goal is to transfer an arbitrary argumentation semantics to P .

To this end P is transformed to its unfolded form Q and an argumentation
framework over Q is constructed. Definition 2 of attack relation is used also here.
If a rule with non-empty positive part of its body is in an unfolded program, it is
either a tautological rule or a rule with false body. Those rules are not executable
and it is not intuitive consider them as attacking rules. Hence, we may suppose
that an attacking rule has the empty positive body.

Similarly, we use without a change also Definition 3 of rules enabled by an
argumentation semantics. A subset R ⊆ Q of rules enabled by an argumentation

4 Equivalences w.r.t. to other semantics hold, too, but we are interested only in stable
model semantics, see Definition 9.

semantics S, i.e., an extension of AFQ w.r.t. S is selected and a stabble model
M of R is computed (we will show that there is only one such stable model).

Finally, a semantic counterpart of S for P is built over M .
Let us start with some examples motivating some hints for a specification

of a semantic counterpart of an argumentation semantics for a logic program.
After that follows a formal elaboration.

Example 9 Remind Example 7: P = {r1 : a ← p,not b, r2 : b ← q,not a, r3 :
p←}. It was shown that the method of Section 4 does not guarantee corerspone-
dence of the stable model of P and the stable extensions of AFP .

Consider Q, the unfolded form of P : {q1 : a ← not b; q2 : b ← q,not a; q3 :
p ←}. The only stable extension of AFQ is R = {q1, q3}. The only stable
model of R is S = {not b} ∪ {a, p}, where {not b};R = {a, p}. Observe that
{q} = body+(P). It holds that atoms from positive parts of bodies of an unfolded
program are false in each stable model of the program. Hence, we can assume
not q and {not b,not q} ∪ {not b, snotq};R is (the only) stable model of P . 2

There is yet further reason for adding default literals into a semantic coun-
terpart of an extension.

Example 10 Let P be an unfolded program {r1 : a ← not b; r2 : b ←
not a; r3 : c← not b; r4 : c← not a; r5 : d← not c}.

Stable extensions of AFP are {R = {r1, r3}, R′ = {r2, r4} and stable models
of R and R′ are {not b} ∪ {a, c} nd {not a} ∪ {b, c}. respectively, where {a, c} =
{not b};R and {b, c} = {not a};R′ .

Consider now r5: d is false both in R and R′. If a goal is to transfer stable
models of R (R′) to stable models of P it is needed to assume also not d. 2

Examples 9 and 10 illustrated that a completion is required, if we want to get
a stable model of P , because we are aiming at a total interpretation. On the other
hand, some argumentation semantics do not require two-valued counterparts on
the side of logic programs.

Another useful hint is motivated by the next example. An argumentation
framework without stable extension, but with preferred extension is presented.
We need to accept a three-valued point of view, when constructing a countepart
of this semantics for logic programs.5

Example 11 Let P be an unfolded program {r = p← not p}. AFP is ({r}, {(r, r)}).
The preferred extension of AFP is ∅ ⊆ P , the stable model of the empty pro-
gram is empty. If we want to suggest a semantic characterization of P , which is
a counterpart of the preferred extension of AFP , we have to consider 3 valued
interpretations, in order to avoid an assignment of true to not p. 2

It is useful to show now that a set of rules enabled by an argumentation
semantics has only one stable model.

5 Semantic counterparts of “classic” argumetation semantics were charcterized already
in [10,11,4].

Proposition 2 Let R ⊆ Q be a set of rules enabled by an argumentation se-
mantics S. Then R has the only stable model. 2

Proof: Suppose that R ∈ ES(AFQ). Only conflict-free semantics are assumed,
i.e. head(R) ∩ body−(R) = ∅. Suppose for simplicity that tautological rules and
rules with atoms in their bodies, which are not defined by a rule are (equivalently)
eliminated.

Let ∆ be body−(R). Then ∆;R = {head(r) | r ∈ P, body+(r) = ∅}. There-
fore, M = ∆ ∪ ∆;R is a total interpretation in the language of R, each atom
of R occcurs in M either in positive form or negated. It is also the only stable
model of R, because there is no different set of assumptions ∆′ generating via
R a total interpretation.

If rules with atoms in its bodies are not eliminated, ∆ contains also default
negations not A s.t. A occurs in a body of a rule, but it does not occur in a head
of a rule with the empty positive body. 2

Our examples showed that a careful stance is needed when argumentation
semantics S is transformed into a semantic counterpart of S for the given logic
program P . We will use a function α(S, P) which assigns a set of default nega-
tions to a given argumentation semantics S and logic program S. For the goals
of this paper α assigns an empty set of default negations to each argumentation
semantics except of stable semantics (or except of each two valued semantics). In
that case α adds to default negations of the stable model of R default negations
of all atoms occuring in P , but not in R.

Definition 9 (Counterpart) Let P be a program, Q its unfolded form, AFQ
be an argumentation framework over Q and S be an argumentation semantics.

Suppose that R ⊆ Q is a set of rules enabled by S and ∆∪∆;R is the stable
model of R. We assume also a function α(S, P), which assigns a set of default
literals to an argumentation semantics S and program P .

Then (∆ ∪ α(S, P)) ∪ ∆;R is called a semantic counterpart of S for the
program P . 2

In Eexample 9 the stable model of the stable extension R was also a stable
model of P . We will show that in general the semantic counterpart of a stable
extension of AFQ is a stable model of P , if Q is an unfolded form of P .

Let At(P) be the set of atoms occuring in P .

Proposition 3 Let P be a logic program, Q its unfolded form, S be the stable
argumentation semantics and R ⊆ Q,R ∈ ES(AFQ) be a stable extension of
AFQ.

If ∆ ∪∆;R is the stable model of R, then (∆ ∪ α(S, P)) ∪∆;R is a stable
model of P , where α(S, P) is {not A | A ∈ At(Q \R)}, 2

Proof: LetR ⊆ Q be a stable extension ofAFQ, i.e.R = {r ∈ Q | r is not attacked by R}.
Further, let M be the stable model of R, i.e. M = ∆ ∪ ∆;R is for some ∆ a
total interpretation of R.

We will show that for some set of assumptions Θ is ∆ ∪ Θ ∪∆;R a stable
model of P . Let Θ be {not A | A ∈ At(Q \R)}.

Consider q ∈ Q \ R, i.e. there is r ∈ R s.t. not head(r) ∈ body−(q). Hence,
rules of Q \ R are not applicable w.r.t. Q ∪ ∆, all heads of rules from Q \ R
have to be considered as false in any superset of M . Similarly for each atom
A ∈ At(Q \R) s.t. A 6∈ head(Q \R).

It follows that (∆ ∪ Θ) ∪∆;R is a stable model of Q, consequently aalso a
stable mlodel of P . 2

Semantic counterparts of some argumentation semantics are discussed briefly
in the next section.

6 Discussion

Main goal of this section is to provide a brief characterization of some logic
program semantics, transferred from the “classic” argumentation semantics and
to oultine the topic of semantic characterization of logic programs with odd-
length cycles through default negations. A more detailed characterization is a
goal of our future research. In this paper the counterparts to admissible, pre-
ferred, grounded and complete argmentation semantucs are provided indirectly,
via a mapping to notions and results of [4].

Semantic counterparts of admissible, preferred, stable, grounded, complete
argumenation semantics were studied already in [10,?,4]. A correspondence be-
tween stable (well founded) models of a logic program P and stable (grounded)
extensions of the argumentation framework AFnapif (P), assigned to P is shown
in [10]. Dung in [11] proposed some new semantics of logic programs. The se-
mantics were inspired by (and correspond to) “classic” argumentation semantics.
Here is a list of semantics pairs, the first member of the pair is an argumentation
semantics, the second is the corresponding logic program semanics: admissible
set – admissible scenario [11]; preferred extension : preferred extension [11]; com-
plete extension : complete scenario [11]; grounded extension : well founded model
[10].

Results of [4] concerning relations between logic program sematics and argu-
mentation semantics are dependent of [11]. However, the first part of this section
presents the construction of [4]. The reason is that there is a simple assignment
of our conceptual apparatus to notions of [4] and, consequently, the results of
[4], i.e., the resilts of [11] can be inherited also by our framework.

Our goal is to express analogues of Proposition 3 for admissible, preferred,
grounded and complete extensions, i.e., to show for a logic program P and its
unfoldded form Q that if R ⊆ Q is an admissible (preferred, grounded, com-
plete) set of arguments in AFQ then the stable model of R specifies its semantic
counterpart for the logic program P .

Our construction is mapped onto the construction of [4] and it is briefly ar-
gued that their results about semantic counterparts of argumentation semantics
hold also for our approach.

An argumentation-theoretic framework over a deductive system is used in [4]
for a characterization of different nonmonotonic semantics. Basic argumentation-
theoretic semantics are defined for assumption-based frameworks and a set of
nonmonotonic semantics is characterized in terms of argumentation semantics.

We introduce here only the specialization of the abstract argumentation-
theoretic framework over a deductive system for logic programs, which was con-
structed in [4].

Deductive system corresponding to a logic program P is a pair (V,R), where
V consists of the set of all literals L and of all rules, which can be constructed
in terms of L. R is the set of all inference rules with premisses created by a rule
and all literals in its body, while the consequent of the given rule is the head of
the rule in the premisses.

An argumentation-theoretic framework over such deductive system is a triple
(P,H, c), where H = 2D is the set of all sets of assumptions constructible in the
given language and c is a mapping, which assigns atom A to a default negation
not A.

Let T be P ∪ ∆, where ∆ is a set of assumptions. A deduction from T is
a sequence σ = 〈β1, . . . , βk〉, where k > 0, βi ∈ T or it is a consequence of an
inference rule with all premisses occuring before βi in σ. It is denoted by T ` L
that there is a deduction of a literal L from T .

∆ is a conflict-free set of assumptions iff P ∪ ∆ 6` A,not A. A maximal
conflict-free asuumption is defined in a sraighforward way. A set of assumtions
∆ attacks an assumption not A iff P ∪∆ ` A and ∆ attacks a set of assumptions
∆′ iff it attacks some not A ∈ ∆′.

The proofs of results similar to Proposition 3 are based on the following
observation.

If R is an admissible set of arguments in our approach (i.e., a set of rules)
and ∆ = body−(R) then ∆ is an admissible set of assumptions: it does not
attack itself and if some ∆′ attacks ∆ then ∆ atacks ∆′. Further, A ∈ ∆;R

iff R ∪ ∆ ` A and our attack relation of AFP is equivalent to the attack of
[4], which was defined above. Therefore, also conditions for preferred, grounded
and complete semantics of AFQ are inherited by stable models of R, i.e. by a
semantics of P .

A transfer of results gained in [4] to an identification of semantic counterparts
of argumentation-theoretic semantics of AFP for a logic programP is based on
the presented observation. A detailed exposition of this result will be presented
in a next paper.

In the second part of this section the topic of odd cycles and of transferring
argumentation semantics of [3] to logic program semantics is discussed.

Programs with ood-length cycles throuigh default negation do not have stable
models. However, there is a reserach devoted to attempts to priovide a reasonable
semantic characterization of such programs. We do not refer to that research, our
goal is only to outline how our method enables a trnsfer of semantics proposed
in [3].

Our method enables a transfer of an arbitrary argumentation semantics to
a logic program semantics, consequently, it can serve as a tool for transferring
semantics AD1,AD2, CF1 and CF2 [3] and, thus, to rpovide a semantic charac-
terization of odd cycles.

First, an example, which shows that “classic” argumentation semantics have
some the problems with odd cycles.

Example 12 Consider program P1 = {r1 : a ← not b, r2 : b ← not a} with a
negative cycle of even length and P2 = {r1 : a ← not b, r2 : b ← not c, r3 : c ←
not a} with an odd length negative cycle.

There is no stable model of P2, but P1 has two stable mdels. Preferred, stable
and complete argumentation semantics assign also two extensions to AFP1

. On
the other hand, they assign one (empty) or no extension to AFP2

. This assymetry
is considered in [3] as a drawback. 2

Recursive semantics of [3] are aiming to overcome that drawback. An inter-
esting solution of the problem of odd cycles may provide a new perspective on
semantic characterization of logic programs, too.

Example 13 Let us continue with Example 12.
Note that AFP2

consists of the only component, the odd cycle (r1, r2), (r2, r3), (r3, r1).
CF1 assigns three extensions {r1}, {r2}, {r3} to AFP2

. Connsequently, our con-
struction enables to transfer three sets of atoms {a}, {b}, {c} as a semantic char-
acterizations of the logic program P2.

Observe that no one of those characterizations is a two-valued model of P2.
However, a three-valued or paraconsistent model is possible. 2

Consider also other example.

Example 14 Let be P = {r1 : a ← not a, r2 : b ← not a}. The argumenta-
tion framework AFP has according to the semantics CF2 extension {r2}, con-
sequently {b} is transferred to P .

A three-valued or paraconsistent interpretation is needed, too. 2

Our futurre goal is to investigate more deeply semantics trasferred from AD1,
AD2, CF1, CF2 or other argumentation semantics to logic program semantics.

7 Representation result

In this section we apply a changed view. An argumentation framework A is
assumed and its representation by a simple logic program PA is constructed.
Then we can construct an argumentation framework B = AFPA over the rules
of PA using our method.

We will present a kind of representation result – an argumentation semantics
of A is preserved under transformations to B via PA. Suppose that an argumen-
tation framework A is given. Conisder its extension E under the argumentation

semantics S. We will transfer A to a logic program PA. If the argumentation
framework AFPA is constructed then the semantic counterpart of an extension
of AFPA under S in PA is again E.

Definition 10 Let an argumentation framework AF = 〈AR, attacks〉 be given.
We represent AF by a logic program PAF as follows

– for each a ∈ AR there is exactly one rule r ∈ PAF s.t. head(r) = {a}
– body−(r) = {b | b ∈ AR, (b, a) ∈ attacks}, body+(r) = ∅.

2

If body of a rule is empty, then the corresponding argument is not attacked in
AF . A selection of a conflict-free R ⊆ PAF starts from the facts and subsequently
are considered only those attacking arguments (negative literals in bodies of
PAF), which do not occur as heads in the rules already included in R. Additional
conditions on R are specified by an argumentation semantics S.

Example 15 Let be AF = (AR, attacks), where AR = {a, b, c, d, e}
and attacks = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}. PAF , the logic program
representing AF is as follows:

r1 : b← not a,not c

r2 : a←
r3 : c← not d

r4 : d← not c

r5 : e← not e,not d

2

Programs representing an argumentation framework look like lists: to each
argument in the head of a rule is assigned a list of arguments attacking the
argument in the head of the rule.

Notice that there are logic programs, which cannot represent an argumenta-
tion framework. On the other hand, if a logic program represents an argumenta-
tion framework, it is done in a unique way – there is exactly one argumentation
framework represented by the program.

Example 16 P1 = {a← not b, b← not a} is a logic program, which represents
the argumentation framework AF = 〈{a, b}, {(a, b), (b, a)}〉.

P2 = {a ← not b} cannot be a representation of any argumentation frame-
work. There is no rule in P2 with b in its head (and each argument must be in
the head of a rule).

Theorem 4 Let AF be an argumentation framework, AF = (AR, attacks),
PAF be the logic program representing AF . Let In AS be a set of atoms, deriv-
able in PAF according to a semantics S.

Then In AS is an extension of AF according to the semantics S.

Proof:
For each argument a ∈ AR, there is exactly one rule r ∈ PAF s.t. head(r) = a. A
function Ψ : R→ AR, where R ⊆ PAF , assigns to each rule r ∈ R the argument
a ∈ AR, which occurs in the head of r. Ψ−1 : AR → R is an inverse function
which assigns to an argument the rule with the argument in the head.

In AS = {a | ∃r ∈ Rule in, head(r) = a} follows from the fact that
body+(r) = ∅ for each rule r. Hence, In AS = Ψ(Rule in).

Let us denote PAF simply by P . It follows from the definition that for each
(a, b) ∈ attacks there is a pair (r1, r2) ∈ attacksP , whereAFP = 〈ARP , attacksP 〉.
Notice that a ∈ head(r1) and b ∈ head(r2). (AFP is a framework over the rules
of the program P). If (a, b) ∈ attacks then not a occurs in the body of a rule
with b in the head. Similarly, for all (r1, r2) ∈ attacksP there is (x, y) ∈ AF
s.t. head(r1) = x, y ∈ body−(r2). Therefore, the only difference between the
frameworks AF and AFP is that the vertices of both frameworks are renamed
according to the function Ψ .

Therefore, In AS = Ψ(Rule in) = ES(AF). 2

8 Related work

First, we compare from the computational point of view arguments of our argu-
mentation framework AFP to arguments of [10] and the attack relation of AFP
to the attack relation of [4].

In [10] arguments assigned to a logic program are pairs (∆, k), where k ∈
∆;P is a ground atom or pairs of the form ({notk}, notk). In the general case
of first-order language the set of arguments is undecidable. In the case of a
propositional language, the corresponding decision problem is computationally
demanding. On the other hand, arguments of AFP are rules of P .

Similarly, the decision problem concerning the attack relation of [4] is com-
putationally more demanding than ours, where only pairs of rules are compared.

Of course, an extra computational cost of a transformation to an unfolded
progarm is needed except of the relatively simple identification of arguments and
attacks in AFP . On the other hand, if we replace GPPE by loop detection, see [9],
we can get the transformation in polynomial time. Additionally, as regards the
computational complexity of our approach, if a set of rules R is an extension of
an argumenttion framework AFQ and Q is an unfolded program with eliminated
atoms in bodies, then R is stratified and only two levels are necessery for its
stratification. Computational aspects of our approach will be analyzed more
precisely in a next paper.

Let us proceed to other related works. We are familiar with the following
types of results.

– Some researchers construct a new semantics of logic programs, inspired by
extensions of argumentation frameworks. This goal is close to ours.

– A correspondence of an argumentation semantics and a logic program seman-
tics is described. Particularly, they specify a characterization of extensions of
abstract argumentation framework in terms of answer sets or other semantics
of logic programs.

– Finally, encoding extensions of argumentation frameworks in answer set pro-
gramming is another type of research. This research usually leads to an im-
plementation of argumentation semantics.

Argumentation framework is constructed and studied in terms of logic pro-
grams in [18]. Arguments are expressed in a logic programming language, con-
flicts between arguments are decided with the help of priorities on rules.

The correspondence between complete extensions in abstract argumentation
and 3-valued stable models in logic programming was studied in [20].

The project ”New Methods for Analyzing, Comparing, and Solving Argu-
mentation Problems”, see, e.g., [12,14], is focused on implementations of argu-
mentation frameworks in Answer-Set Programming, but also other fundamental
theoretical questions are solved. CF2 semantics is studied, too. An Answer Set
Programming Argumentation Reasoning Tool (ASPARTIX) is evolved.

The Mexican group [6,15,16,17] contributes to research on relations of logic
programing and argumentation frameworks, too. Their attention is devoted to
characterizations of argumentation semantics’ in terms of logic programming
semantics. Also a characterization of CF2 is provided in terms of answer set
models or stratified argumentation semantics, which is based on stratified mini-
mal models of logic programs.

Our main goal, in the context of presented remarks, is to “import” semantics
from argumentation frameworks to logic programs. However, also other results
about relations of both areas are relevant for us.

This section contains only some sketchy remarks, a more detailed analysis
and comparison is planned.

9 Conclusions

A method for transferring an arbitrary argumentation semantics to a logic pro-
gram semantics was developed. The method consists in defining an argumenta-
tion framework over the rules of a program. Extensions of the argumentation
framework are sets of rules. A set of consequences of those rules is an inter-
pretation, which provides the corresponding semantic characterization of the
program.

This method allows a semantic characterization of programs with odd-length
(negative) cycles.

Acknowledgements: This paper was supported by the grant 1/1333/12 of
VEGA.

References

1. M. Adamová: Representácia abstraktného argumentačného frameworku logickým
programom; Master Thesis, Comenius University, 2011

2. M. Adamová, J. Šefránek: Transfer of semantics from argumentation frameworks
to logic programming. A preliminary report. Proceedings of WLP/INAP 2011.

3. Baroni, P., Giacomin, M., Guida, G.: SCC- recursiveness: a general schema for
argumentation semantics. Artificial Intelligence, 168 (1-2), 2005, 162-210

4. A. Bondarenko, P.M. Dung, R.A. Kowalski, F. Toni: An abstract, argumentation-
theoretic approach to default reasoning. Artif. Intell. 93: 63-101 (1997)

5. S. Brass, J.Dix: Characterizations of the Stable Semantics by Partial Evaluation.
Journal of Logic Programming, 32(3), 207-228, 1997

6. J. L. Carballido, J. C. Nieves, and M. Osorio.: Inferring Preferred Extensions by
Pstable Semantics. Iberoamerican Journal of Artificial Intelligence, 13(41):3853,
2009

7. Y. Dimopoulos, A. Torres: Graph theoretical structures in logic programs and
default theories, Theoretical Computer Science 170, pages 209-244, 1996.

8. J.Dix: A Classification Theory of Semantics of Normal Logic Programs: II. Weak
Properties. Fundamenta Informaticae, 22 (3): 257-288 (1995)

9. J. Dix, U.Fuhrbach, I. Niemelä: Nonmonotonic Reasoning: Towards Efficient Cal-
culi and Implemenations. Handbook of Automated Reasoning, 2001

10. P. M. Dung: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence
77, pages 321-357, 1995.

11. Dung, P.M.: An Argumentation Theoretic Foundation of Logic Programming.
Journal of Logic Programming, vol. 22, No. 2, 1995, 151-177

12. Eggly, U., Gaggl, A., Woltran, S.: ASPARTIX: Implementing Argumentation
Frameworks Using Answer-Set Programming. Proc. of the 24th International Con-
ference on Logic Programming (ICLP 2008), 734-738. Springer LNCS 5366, 2008.

13. A. Gabaldon: A Selective Semantics for Logic Programs with Preferences, Proc. of
NRAC, 2011.

14. S. A. Gaggl, S. Woltran: Cf2 Semantics Revisited. Frontiers in Artificial Intelligence
and Applications, pages 243-254. IOS Press, 2010.

15. J. C. Nieves, M. Osorio, and C. Zepeda. Expressing Extension-Based Semantics
based on Stratified Minimal Models. In H. Ono, M. Kanazawa, and R. de Queiroz,
editors, Proc. of WoLLIC 2009, Tokyo, Japan, 305-319. Springer Verlag, 2009.

16. J. C, Nieves and I. Gomez-Sebastia: Extension-Based Argumentation Semantics
via Logic Programming Semantics with Negation as Failure. Proc. of the Latin-
American Workshop on Non-Monotonic Reasoning, CEUR Workshop Proceedings
vol 533, 31-45, Apizaco, Mexico, November 5-6, 2009.

17. Osorio, M., Nieves, J.C., Gmez-Sebastia, I.: CF2-extensions as Answer-set Models.
Proceedings of the COMMA2010 Conference. Pages 391-402.

18. H. Prakken, G. Sartor: Argument-based logic programming with defeasible pri-
orities. Journal of Applied Non-classical Logics 7: 25-75 (1997), special issue on
‘Handling inconsistency in knowledge systems’.

19. J. Šefránek and A.Šimko: Warranted derivation of preferred answer sets,
Proc.WLP/INAP 2011.

20. Wu, Y., Caminada, M., Gabbay, D.: Complete Extensions in Argumentation Co-
incide with Three-Valued Stable Models in Logic Programming. Studia Logica
93(2-3):383-403 (2009)

