Updates of Nonmonotonic Knowledge Bases.

Jén Sefrének
Department of Applied Informatics
Faculty of Mathematics, Physics and Informatics, Comenius University
Bratislava, Slovakia, e-mail: sefranek@fmph.uniba.sk

Abstract

The dynamic aspects of knowledge representation has been tackled recently by a variety
of approaches in the logic programming style. We consider the approaches characterized by
the causal rejection principle (if there is a conflict between rules, then more preferred rules
override those less preferred). A classification and a comparison of the approaches is presented
in the paper. We compare them also to our own approach based on Kripke structures.

1 Introduction

A theoretical investigation of dynamic aspects of knowledge representation is presented in this
paper. Our attention is focused on the evolving knowledge bases. The changes may be caused
by the flow of time, by a new information obtained from a different sources or by a new point of
view. The problems of changing and integrating information in modular, multiple-sourced, and
dynamic knowledge bases are of crucial importance for the theory of knowledge representation and
reasoning.

Recently the problem of evolving knowledge bases has been tackled by a variety of approaches
in the logic programming style, see [6, 2] and others. A detailed and comprehensive information is
available in [5]. The presented model consists of a set of logic programs (each of them represents a
module of the knowledge base) and of a preference relation on modules. The preference relation is
a dynamic one — some events in the environment can change it. The conflicts between the modules
are resolved according to the preference relation. The main attention has been devoted to the
conflicts between rules. They are resolved according to the causal rejection principle: if there is a
conflict between rules, then more preferred rules override those less preferred.

Goals of this paper are

e to introduce a point of view useful for a classification of the approaches based on the causal
rejection principle,

e to compare them to our approach [8, 9].

The paper is structured as follows: Technical prerequisites are presented in the Section 2. Two
basic types of rules rejection (those of [1] and [2]) are described in the Section 3. Then, in the Section
4 two strategies of accepting the default assumptions (when updating) are described. We combined
them with the strategies of rule rejection and obtained four types of semantics of logic program
updates. The relations between these four types are summarized. Finally, our approach, based on
a Kripkean semantics is compared to the approaches based on the causal rejection principle.

2 Preliminaries

Consider a set of propositional symbols (atoms) A. A literal is an atom (a positive literal) or an
atom preceded by the default negation (a negative literal), not A. The set {notA : A € A} will
be denoted by D (defaults, assumptions). For each atom A, A and not A are called conflicting
literals. A set of literals is called consistent, if it does not contain a pair of conflicting literals. A
convention as follows is used: if literal L is of the form not A, where A € A, then not L = A.

A rule is a formula r of the form L < Ly,..., Ly, where k > 0, and L, L; are literals (for each
i). We will denote L also by head(r) and the set of literals {L1, ..., Ly} by body(r). If body(r) = 0,
then r is called a fact. The subset of all positive (negative) literals of body(r) is denoted by body™ (r)
(body~(r)). For each rule r we denote the rule head(r) < body™ (r) by r*. We say that two rules,
r and ', are conflicting rules if head(r) = not head(r'), notation: r X r'.

The set of all rules (over A) forms the language £. A finite subset of £ is called a generalized
logic program (program hereafter).

A partial interpretation of the language L is a consistent set of literals. The set of all partial
interpretations of the language £ is denoted by Int;. A total interpretation is a partial interpre-
tation I such that for each A € A either A € I or not A € I. Sometimes it will be convenient to
speak about interpretations and sets of facts interchangeably. For this reason, we introduce the
notation as follows: Let M be an interpretation, then rule(M) = {L <—: L € M}.

We accept a convention as follows: All programs use only propositional symbols from 4. In-
terpretations of all programs are subsets of Int,.

A literal L is satisfied in a partial interpretation I if L € I. A set of literals S is satisfied in
a partial interpretation I if each literal L € S is satisfied in I. A rule r is satisfied in a partial
interpretation I if head(r) is satisfied in I whenever body(r) is satisfied in I. Notation: I = L,
IES IET™T.

A total interpretation I is a model of a program P if each rule r € P is satisfied in I.

Notice that (propositional generalized logic) programs may be treated as Horn theories: each
literal not A may be considered as a new propositional symbol. The least model of a Horn theory
H is denoted by least(H).

Definition 1 (Stable model, [1]) Let P be a program and S be a total interpretation. Let
ST ={not AeS:Ae A}
Then S is a stable model of P iff S = least(P U rule(S™)). O

Some basic recent semantic characterizations of logic program updates are summarized (and
classified) in next two sections. Our attention is focused on two approaches: (multidimensional)
dynamic logic programming (MDyLoP) [6, 5] and the approach of Eiter and his group [2]. Both
approaches use the idea of causal rejection principle in order to resolve the conflicts between
programs.

In the framework of MDyLoP the language of generalized logic programs is used, while [2]
uses the language of extended logic programs. In this paper only the language of generalized
logic programs and the framework of multidimensional dynamic logic programming is used. We
incorporate some ideas of [2] into this framework.

Multidimensional dynamic logic program is defined as a set of generalized logic programs to-
gether with a preference relation on the programs [6]. A specification of the relation can be based
on the edges of a graph.

Definition 2 ([6]) A multidimensional dynamic logic program (also multiprogram hereafter) is a
pair (P,G), where G = (V, E) is an acyclic digraph, |[V| > 2, and P = {P, : v € V} is a set of
generalized logic programs.

We denote by v; < v; that there is a directed path from v; to v; and v; < v; means that v; < v;
or i = j. If v; < v;, we say that P,, is more preferred than P,,.
We denote the set of programs {P,, : v; < s} by P,. O

If G is a directed path, the multidimensionality is collapsed and we speak simply about dynamic
logic programs. The elementary case is represented by V = {u,v} and E = {(u,v)}.

3 Strategies of the rules rejection

We account for two strategies how to formalize the idea of causal rejection. They lead to the sets
reject(P, s, M) and rjct(P,s, M), see below. The former has been defined for example in [1, 6],
the later for example in [2].

Definition 3 Let (P,G) be a multidimensional dynamic logic program, where G = (V, E) and
P ={P,:v €V} Let M be an interpretation, s € V.

reject(P,s, M) = {reP;:3jeV I ePj(i<j3sArXy
A M = {body(r), body ()} },
rict” (s, M) = 0§
rict” (i,M) = {reP;:3j€V I € P;\ rjct” (j, M)
(i<j=2XsArXr' AM E {body(r), body(r')}}
rjct(P,s, M) = U rict” (i, M)
i<s

A multiprogram is denoted by P in what follows. A graph G = (V, E) is implicitly assumed.

Theorem 4 Let P be a multiprogram, s € V, M be an interpretation. It holds that rjct(P,s, M) C
reject(P,s, M). O

The inclusion reject(P, s, M) C rjct(P,s, M) does not hold for some P, s, M:

Example 5 ([7]) Let P = P,U, P; be a dynamic logic program, 1 < 2 < 3.

P = {a+bb+«}
U = {notb+ a}
Py = {b «— a}
Let w be {a,b}. Then
reject(P,3,w) = {b<+,notb+ a}
rjct(P,3,w) = {notb+ a}

O

The rejection done by 7jct is a minimal one, in a reasonable sense:

Theorem 6 Let a multi-program P and s € V be given. Then for each w holds that rjct(P, s, w)
is a minimal subset of Ps containing at least one rule from each pair (r,r') € P x P of conflicting
rules, where w |= {body(r), body(r')} and the set of all non-rejected rules is a consistent one, if
each P € P is consistent. O

4 Strategies of assumptions accepting

The meaning of a program depends both on rules and on default assumptions (see Definition 1).
Therefore, the approach to default assumptions accepting is an essential one for updates of logic
programs. Again, two strategies are discussed. Observe, that two strategies of rules rejection may
be combined with two strategies of the acceptance of default assumptions.

The first strategy is as follows: Consider a multi-program P. The updated program consists of
all rules of P except those rejected (according to the selected strategy). The semantics of updated
programs is defined by their stable models. It means: if S is a stable model of an updated program,
then S~ is the corresponding set of default assumptions.

The concepts of justified updates [5] and backward-justified updates use this strategy.

Definition 7 Let P = (Pp, D) be a multiprogram, s € V.

An interpretation M is a justified update of P at state s € V iff M is a stable model of the
program P; \ reject(P,s, M). An interpretation M is a backward-justified update of P at state
s € V iff M is a stable model of the program P, \ rjct(P,s, M). O

Theorem 8 ([5]) Let P be a program and s € V. If S is a justified update of P at state s, then
S is its backward-justified update ot s. O

The Theorem 8 does not hold in the converse direction:

Example 9 Consider the multiprogram P from the Example 5. The interpretation {a,b} is a
backward-justified update of P at state 3, but it is not its justified update at 3. O

(Backward-)justified updates suffer from some unpleasant properties:

Example 10 ([5]) Let P = (P,U), where 1 < 2,

P = {a+}
U = {nota+ nota}

Both M; = {a} and M2 = {not a} are justified (and backward-justified) updates of P at state 2.

There is no reason to accept the interpretation M, (more precisely, to accept the default
assumption not a in M) and, consequently, to reject the fact a <. Troubles are caused also by
(more general) cyclic updates. O

The (implicit) policy of accepting default assumptions which is behind the (backward-)justified
updates is not an adequate one. If we select an interpretation S, then the negative literals of S
are accepted, whenever the condition S = least((Ps \ reject(P,s,S)) U S™) is satisfied. Certainly,
a more subtle (explicit) policy is required. Such a policy is proposed within the second strategy of
the updated program building (see a set default(P, s, M) defined below). The strategy is specified
in the frame of the (multidimensional) dynamic logic programming [6] paradigm and it is based
on the declarative semantics of dynamic! stable models at state s.

Definition 11 (Dynamic stable model at state s, [6]) Let P = (Pp, D) be a multidimen-
sional dynamic logic program, where D = (V, E) and Pp = {P, : v € V}. Let M be an interpre-
tation, A be an atom, s € V. Then

default(P,s,M) = {not A:—-3r € P,;: (head(r) = A AN M |= body(r))}

!The term dynamic stable model is due to [2].

An interpretation M is a dynamic stable model of P at state s € V, iff

M = least((Ps \ reject(P, s, M)) U default(P, s, M))
and M is a backward-dynamic stable model of P at state s € V, iff

M = least((Ps \ rjct(P, s, M)) U default(P, s, M)).

Remark 12 If the condition M [{body(r), body(r')} (from the definition of reject or rjct) is
simplified to M = body(r') we get an equivalent notion of dynamic stable model: rules whose body
is not satisfied in M do not affect the least model. O

Theorem 13 ([2, 5]) If S is a dynamic stable model of P at state s, then it is its justified update
at s. O

The converse implication doesn’t hold:

Example 14 ([5]) Consider the program from the Example 10: My = {not a} is not a dynamic
stable model of P: default(P,2, M2)) =0, but My = M,. O

Theorem 15 If S is a backward-dynamic stable model of P at state s, then it is its backward-
justified update. O

Also the Theorem 15 does not hold in the converse direction, see the Example 10. (Notice
that for the sequences of two programs reject coincide with rjct, therefore their backward-justified
updates coincide with justified updates, and their backward-dynamic stable models with dynamic
stable models.)

Theorem 16 Let P be a multiprogram, s € V. If S is a dynamic stable model of P at state s
then it is its backward-dynamic stable model at s. O

The Theorem 16 does not hold in the converse direction, see again the examples 5 and 9:
w = {a,b} is not a dynamic stable model of P at state 3, but it is its backward-dynamic stable
model.

The summary: For each given multi-program P holds: dynamic stable models of P (at each
state s) create a proper subset of justified updates of P and of backward-dynamic stable models of
P. And both last mentioned interpretations create a proper subset of backward-justified updates.

5 Kripkean semantics

The problems with tautological and cyclic updates are not removed completely by the introduction
of dynamic stable model semantics:

Example 17 ([5]) Let P be (P,U), where 1 < 2 and

P ={nota+ U={a+a}
a+}
S = {a} is the (backward-)dynamic stable model of P at state 2.

Similarly, if P’ is (P,U’), where U’ = {a + b;b + a}, then S = {a,b} is the only dynamic
stable model of P’ at state 2. O

A recent semantics, called refined dynamic stable model semantics [3] solves the problem of tauto-
logical (cyclic) updates which can resolve inconsistencies in a program by a simple straightforward
method — conflicting literals in one program are rejected mutually. However, the solution holds
only for sequences of programs. The problem is not resolved for the multidimensional case, see
[11].

Moreover, the semantics of (refined) dynamic stable models suffers form other fundamental
problems. In enables irrelevant updates, see Example 18, and — on the other hand — it is not able
to recognize such conflicts between programs that are not manifested by conflicts between rules,
see Example 19.

Example 18 ([2]) Let P be (P,U), with 1 < 2, where

P={a+b U = {not b + not a}
b}

Dynamic stable models of P at state 2 are S; = {a,b} and Sa = {not a, not b}. If the information
from P and U is given, there is no sufficient reason to believe in Sy and to reject the fact b . O

Suppose that we accept a “static” semantics Sem (for example the stable model semantics) and a
“dynamic” semantics DynSem (for example dynamic stable model semantics). It is very natural
to accept the postulate as follows: If P U U is consistent then Sem(P UU) = DynSem({P,U)).
Observe that this very natural requirement is not fulfilled by dynamic stable model semantics, see
Example 18 (and also by the other semantics based on the causal rejection principle).

Moreover and most importantly, there are some conflicts between the programs that are prin-
cipially not solvable on the level of the conflicts between rules:

Example 19 Let U be a more preferred program than P.

P ={a+b,c} U={b< nota
¢« b}

There is no conflict between the rules of both programs. No rule can be rejected and the meaning
of PUU cannot be updated according to the dynamic logic programming [1] paradigm. However,
there is a sort of conflict between the programs (between their meanings): The literal a in the less
preferred program P depends on a set of assumptions (on the set of literals w = {b,c}). On the
other hand, every literal in w is dependent on a default assumption (on the literal not a) in the
more preferred program U. Notice that there is a circular dependency of a on not a in PUU. The
problem of circular dependency can be resolved by rejecting the less preferred dependency of a on
{b,c}.

Hence, our goal is to define rejection of dependencies. We need a more rich semantic structure,
in order to be able to do it. O

Our approach provides a semantic treatment of dependencies between sets of literals (belief
sets). The dependencies are encoded in (rather nonstandard) Kripke structures. The intuition is
as follows: if the world (or our knowledge of the world) is represented by an interpretation w then
(the meaning of) a program P may be viewed as a set of transitions to other worlds, compatible,
in a sense, with w. The transitions are specified as follows: if body(r) is satisfied in w for some
r € P then the world w U {head(r)} is compatible with w, if it is consistent. It is a natural choice
to require that the compatibility relation is transitive and irreflexive.

We present a simplified (but a sufficient one for our current needs) version of the definition of
a Kripke structure associated with a program. For the more complicated version see [9].

Definition 20 (Kripke structure associated with a program) Let P be a program. A Kripke
structure K associated with P is a a pair (W, p), where:

o W =1IntrU{w,}, W is called the set of possible worlds, w is the representative of the set
of all inconsistent sets of literals,

e pis a binary relation on W x W, it is called the accessibility relation and it contains the set
of all pairs (w,w'), where w # w', satisfying exactly one of the conditions:

1. w' = wU {head(r)} for some r € P such that w |= body(r),

2. w' =w, iff Ir € P (w |= body(r) A not head(r) € w).

Definition 21 If e = (u,v) € p, it is said that e is a p-edge and u (v) is called the source (the
target) of e. A p-path is a sequence o of p-edges (wo,w1), (W1, ws),. .., (Wy—1,w,) in a Kripke
structure K.

We say that this o is rooted in wy (also wo-rooted). If there is no p-edge (wy,,w) in K, we say
that o is terminated in w,, w, is called a terminal of o. O

Paths are usually denoted by a shorthand of the form (wg, w1, ..., w,). We are now ready to state
(in terms of nodes and paths in KF) conditions of being a stable model of a program P.

Definition 22 (Distinguished paths, good worlds) Let P be a program, ¢ be a p-path (wyq, . .., wp)
in K¥. We say that o is correctly rooted, if wo C D.

A correctly rooted p-path o terminated in a total interpretation w is called a distinguished path
and w is called a good world. O

Theorem 23 Let P be a program, KT be the Kripke structure associated with P.
Then w,, is a good world in KT iff it is a stable model of P. O

Remark 24 If D is a terminal in X7, it is the (only) stable model of P. The trivial sequence (D)
is correctly rooted and terminated in D. Suppose that a total interpretation w # D is a stable
model of P, we get (D,w,) € p. O

6 Updates of Kripke structures

While the semantics presented in Sections 3 and 4 are based on rules rejection, our semantics of
updates is based on a rejection of some edges in Kripke structures. In other words, the updates
change the compatibility relation between possible worlds.

A removal of some edges may be interpreted as overriding the corresponding dependencies
between belief sets. On the other hand, connecting the edges from one Kripke structure to the
edges from another may be interpreted as an enrichment of the dependencies between belief sets.

Suppose two programs,? P and U, and the Kripke structures, K = (W, p¥’) and KV = (W, pY),
associated with P and U, respectively. Moreover, U (the updating program) is more preferred than
P (the original program).

Our approach enables to recognize conflicts between programs even if there are no conflicts
between rules. In such cases some edges are rejected, but there is no reason to reject a rule. We
regard this as an essential observation:

2Tn this paper only the elementary case of two programs is considered (because of the limited size). The more
general theory is presented in [9].

Example 25 Consider the Example 19. We “translate” its idea into Kripke structures. The world
{a,b,c} (and, consequently, the literal a) is dependent on the world w = {b, ¢} in the less preferred
Kripke structure KF. Similarly, the world w is dependent on the world w' = {not a,b,c} in the
less preferred structure and w' is dependent on the world {not a} in the more preferred Kripke
structure KY. We do not want to accept the circular dependency of a on not a, therefore we
propose to reject the (less) edge ({not a,b,c},w,) € p¥ (leading to inconsistency). O

We intend to define an operation @ on Kripke structures. The resulting Kripke structure XV®F =
KV @ KP = (W, pU®F) should be based on KU while a reasonable part of KF is preserved. Notice
that the set of nodes, W, remains unchanged, but some p?-edges should be rejected.

Definition 26 (Attacked edges) Let W = Int;. Let 71,72 C W x W be binary relations. Let
L be a literal.
We say that e = (u,uU {L}) € 71 is attacked by €' = (u,uU {not L}) € 7. O

Of course, there is a symmetry: if e is attacked by e’ then €’ is attacked by e, too. Nevertheless,
we want to prefer “one side”. We intend to reject an edge from p?” if it is attacked by an edge in
pY.

Sometimes it is needed to reject a pF-edge of the form (w,w,), see the Example 19. In this
case the analysis is a little bit more complicated.?

The basic rule is as follow: if (w,w,) € p¥’ and w occurs on a ps-path, then (w,w,) should be
rejected, if the rejection is not blocked. The idea of blocking is illustrated in the next Example.

Example 27 (Blocking of rejections) Let P be (P,U).

P={a+ U = {nota+ notb
b« not b < not ¢
c+} not ¢ < not a}

Let w; = {not a, not b, not c}. There are three pV-paths to w;. One of them is o = ({not a}, {not a, not b}, w;).
Notice that e; = ({w1,w,) € p¥.
Observe that the pU-paths mentioned above are rooted in default assumptions (in{not a} or
in {not b} or in {not c}). There is no support for these assumptions. But the facts from P should
override default assumptions from U. Therefore, the rejection of e; by o should be considered to
be blocked.
The facts from P are conflicting with respect to each root of a pY-path to w;, w; is not
supported in U. On the contrary, ({not a},w.), ({not b},w.), ({not c},w,) € pF and there is no
reason to reject them. O

The idea of rejections blocking is the fundamental one.

Definition 28 (Blocking) Let programs P and U be given. The corresponding Kripke structures
are denoted by Kp and K. Let (wy,w,) € pP. Let L; and Lo be conflicting literals.

A pY-edge (wo, w1) is blocked iff L; € w; and there is a pP-path from @) to w such that L, € w.
O

Remark 29 Notice that Definition 28 is sufficiently general: if a literal L; from wg is conflicting
with a literal Ly supported (by a path form @ in Kp (as in Example 27) then also L; € w;. O

3More motivations and examples are presented in [9].

Definition 30 (Overriding) A pU-edge e = (wo,w1) overrides a pF-edge (wi,w,) if e is not
blocked. O

Definition 31 (Rejected edges) Consider K = (W,p?) and KV = (W,pY). We say that
e € pT is rejected, if

e e is attacked by some e’ € pU,

e or there is a pU-edge e’ = (wo, w1), overriding e = (wy,w,) € pF.

The set of rejected edges is denoted by Rejected ,v (pF). O

Definition 32 (Update on Kripke structures)

ICU o ICP — KUEBP — (W, pUEBP)
PUEF = VU (o \ (Rejected,w (p7))0

The causal rule rejection principle is satisfied in updated Kripke structures:

Proposition 33 ([7]) Let P = (P,U) be a multiprogram, where 1 < 2. Let w € Intz, r € P and

w = body(r).
If e = (w,w U {head(r)}) € Rejected v (p*) then r € reject(P,2,w) and r € rjct(P,2,w).

Remark 34 ([7]) The converse of the Proposition 33 does not hold. If a rule is rejected, some
edges “generated” by this rule may be not rejected. Let P be {a <}, U be {not a + b} and
w be {a,b}. Then (0,{a}) ¢ Rejected o (p"”) but the rule a « is both in reject(P,2,w) and in
rjct(P,2,w).

Therefore, the rejection defined within the frame of Kripkean semantics is more sensitive (able
to make a more fine distinguishing) than a rejection of rules. O

Remark 35 There is no analogy of the Proposition 33 for the edges with the target w,. It
may happen that (w,w.) € Rejected ;v (pF), but there is no rule r € P N reject(P,2,w) (and in
P N rjct(P,2,w)) (even if P is consistent): According to the Definition 30 there is a rule r € P
such that w = body(r) and not head(r) € w. However, not head(r) may be not introduced by a
rule from U, it may be in the root of each path to w, see the Example 19.

Of course (similarly as in the Remark 34), if a rule is rejected, it is possible that (w,w,) ¢
Rejected v (pP), where the transition from w to w, is generated by the rejected rule.

Problems with tautological and cyclic updates are removed in the Kripkean semantics. Tau-
tologies do not influence Kripke structures.

Proposition 36 Let P be program. Let P' = P U {r}, where head(r) € body(r).
Then K¥ = KF . O

A more general property:

Proposition 37 Let Kp be the Kripke structure associated with a program P. Let P' = P U {r},
and for each w on a p* -path holds: if w = body(r) then head(r) € w.
Then K = KF'. O

The following theorem shows that cycles from U do not cause an update of Xp: paths generated
by cycles are terminated in KP®U by w, if there is a conflict between a rule in P and a rule in
the cycle of U:

Theorem 38 Let for all v € U there is a v’ € U such that head(r) € body(r'). Let w = {head(r) :
reU}.

If there is a pP-path (0,...,u) such that not head(r) € u for some r € U then for each w' such
that w C w' holds that (w',w,) € KFP®U,

Notice now that good worlds of KU®P play the crucial role in the update semantics.

Finally, Kripkean semantics do not suffer from irrelevant updates of the type illustrated by
Example 18 and it is able to recognize the conflicts not distinguishable by semantics based on the
causal rejection principle. Details see in [9]. Our strategy of rejections is more close to those of
backwards-semantics.

7 Conclusions

The results of the paper:
e a classification of the semantics based on the rule rejection principle is given,
e a Kripkean semantics of logic program updates is presented,

e the semantics enables to solve the problem of tautological, cyclic and irrelevant updates and
it is able to recognize conflicts indistinguishable according to the causal rejection principle.

Presented Kripkean semantics is based on (justified by) principles expressed in postulates of
[10].

The work on this paper has been partially supported by a grant of the Slovak Agency VEGA,
No 1/0173/03.

References

[1] Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C. Dynamic Up-
dates of Non-Monotonic Knowledge Bases. The Journal of Logic Programming 45 (1-3):43-70,
September /October 2000

[2] Eiter, T., Fink, M., Sabbatini, G., Tompits, H. On properties of update sequences based on
causal rejection. 2001

L2

Banti
Homola,M.

i)

Leite, J. Evolving Knowledge Bases. IOT Press, 2003.

— e — —
A

=2

Leite, J.A., Alferes, J.J., Pereira, L.M. Multi-dimensional dynamic knowledge representation.
In: Eiter, T., Faber, W., Truszczynski (Eds.): LPNMR 2001, Springer, 365-378

[7] Marinicova, E. Semantic Characterization of Dynamic Logic Programming. Diploma Thesis,
Comenius University, Bratislava, 2001

[8] Sefranek, J. A Kripkean Semantics for Dynamic Logic Programing. Logic for Programming
and Automated Reasoning, Springer, 2000

[9] Sefranek, J. Semantic considerations on rejection. Proceedings of NMR. 2004, Whistler, BC,
Canada

10

[10] Sefranek, J. A dependency theory for logic program updates. submitted to Znalosti 2005

[11] Siska, J. Refined extension principle for multidimensional dynamic logic programs. submitted
to Znalosti 2005

11

