
Nonmonotonic Integrity Constraints

JánŠefránek

Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University,
Bratislava, Slovakia, sefranek@fmph.uniba.sk

Abstract. Semantics of multidimensional dynamic logic programming is traditionally based on the
causal rejection principle: if there is a conflict between rules then the rule from a less preferred program
is rejected. However, sometimes it is useful to solve a conflict between the heads of rules by blocking
the body of a rule. Moreover, semantics based on the causal rejection principle, is not able to recognize
conflicts, which are not manifested as conflicts between the heads of rules.
Nonmonotonic integrity constraints are discussed in this paper. They provide alternative solutions of
conflicts (as compared with solutions based on causal rejection principle). Conceptual apparatus intro-
duced in this paper enables also to distinguish more preferred interpretations and, consequently, it is
relevant for logic programming with preferences. Nonmonotonic integrity constraints and other notions
introduced in the paper (falsified assumptions, more preferred assumptions) contribute to bridging the
gap between research in fields as belief revision or preference handling on the one hand and multidi-
mensional dynamic logic programming on the other hand.

Keywords: nonmonotonic reasoning, updates, multidimensional dynamic logic programming

1 Introduction

Multidimensional dynamic logic programming (MDyLoP) [1, 11, 12, 3] provides an interesting and promis-
ing approach to representation of dynamic aspects of knowledge in the context of logic-based knowledge
representation research. Most semantics of MDyLoP respectthe causal rejection principle (CRP): if the
heads of two rules are conflicting then the less preferred rule is rejected.

Our research [16, 15, 17] is aiming to overcome some drawbacks of CRP. We are focused on as-
sumptions, dependencies on assumptions, conflicts involving assumptions or dependencies. A dependency
framework is introduced [17] in order to be able to handle assumptions and dependencies explicitly and
to solve also conflicts, which are not manifested as conflictsbetween the heads of rules. Nonmonotonic
(defeasible, default) assumptions play a crucial role in nonmonotonic reasoning and so the dependency
framework can be useful also for a foundational research of nonmonotonic reasoning and for a comparison
of various approaches to logic program updates (and to defeasible reasoning/argumentation). In this paper a
more detailed attention is devoted to nonmonotonic integrity constraints introduced in [17]. We address the
topic of removal of nonmonotonic integrity constraints using falsification w.r.t. more preferred assumptions
(the topic has not been detailed in [17]). If nonmonotonic integrity constraints, preference on assumptions
and falsification of assumptions are considered then disagreement of MDyLoP with other approaches rele-
vant for updates of nonmonotonic knowledge bases (NMKB) canbe overcome (f.ex. with research in the
fields of belief revision, see [9, 10, 13] and others, or preference handling, see [7, 8, 5, 6] and others).

Main contributions of the paper: A detailed discussion of nonmonotonic integrity constraints. A demon-
stration that they are useful for alternative solutions of conflicts. It is shown also that other concepts
(preference on assumptions, falsification w.r.t. a set of assumptions, introduced in order to provide for
nonmonotony of integrity constraints) enable to recognizemore preferred stable models. A modified non-
deterministic algorithm for computing a coherent view on a dependency relation is presented.

Roadmap: Basics of multidimensional dynamic logic programming are recapped in Section 2. Depen-
dency framework is described in Section 3. An introduction of integrity constraints is motivated in Section
4. After that, in Section 5 the dependency framework is extended and a semantics of multidimensional
dynamic logic programs based on the dependency framework issketched in Section 6. Finally, in Section
7 main contributions of the paper and some open problems are listed.1

1 This research has been supported by grants APVV-20-P04805,VEGA 1/0173/03 and 1/3112/06.

2 Preliminaries

LetA be a set of atoms. The set ofliterals is defined asLit = A [fnot A : A 2 Ag. Literals of the formnot A, whereA 2 A are calledsubjective. Notation:Subj = fnot A j A 2 Ag. We usenot as default
negation, with intuitive meaning “it is not known that . . . ”.A convention:not not A = A.

A rule is each expression of the formL L1; : : : ; Lk, wherek � 0, L;Li are literals. Ifr is a rule
of the form as above, thenL is denoted byhead (r) andfL1; : : : ; Lkg by body(r). A finite set of rules is
calledgeneralized logic program(program hereafter).

The set ofconflicting literalsis defined asCON = f(L1; L2) j L1 = not L2g. Two rulesr1; r2 are
called conflicting, if(head (r1); head (r2)) 2 CON . Notation:r1 1 r2. A set of literalsS is consistentif it
does not contain a pair of conflicting literals,(S � S) \CON = ;. An interpretationis a consistent set of
literals. A total interpretation is an interpretationI such that for each atomA eitherA 2 I or not A 2 I .
Let I be an interpretation. ThenI� = I \ Subj . A literal L is satisfiedin an interpretationI iff L 2 I . A
set of literalsS is satisfied inI iff S � I .

Definition 1 ([1]) A total interpretationS is astable modelof a programP iffS = least(P [S�);
whereP [S� is considered as a Horn theory andleast(P [S�) is the least model of the theory. A program
is coherentiff it has a stable model.2
Definition 2 ([11]) A multidimensional dynamic logic program(also multiprogramhereafter) is a pairP = (�;G), whereG = (V;E) is an acyclic digraph,jV j � 2, and� = fPi : i 2 V g is a set of
(generalized logic) programs.

We denote byi � j that there is a path fromi to j andi � j means thati � j or i = j. We denote byi k j thati andj are incomparable w.r.t.�. If i � j, we say thatPj is more preferredthanPi.2
If G is a path, we speak aboutdynamiclogic program.

Definition 3 (Dynamic stable model, [11])Let P be a multiprogram. A total interpretationM is called
dynamic stable modelof P iffM = least([i2V Pi nReje
ted(P ;M)) [Defaults(P ;M)); (1)

whereReje
ted(P ;M) = fr 2 Pi j 9r0 2 Pj (i � j; r 1 r0;M j= body(r0))g andDefaults(P ;M) =fnot A j :9r 2 Si2V Pi (A = head (r);M j= body(r))g.
Refined dynamic stable model is defined in [3] similarly, withonly a little difference – conditioni � j

is used in the definition of rejected rules instead ofi � j. We will use for that modified concept notationReje
tedR(P ;M)). The set of all refined dynamic stable models ofP is denoted byRDSM (P). Troubles
with tautological and cyclic updates are overcome in refinedsemantics. However, the refined semantics is
defined only for dynamic logic programs. Refined semantics for the general case of multiprograms is not
known. The well supported semantics of multiprograms is defined in [4], in order to improve the behaviour
of semantics based on CRP.

We will use refined semantics in the analysis of examples, which contain dynamic logic programs. The
well supported semantics for MDyLoP coincides with the refined one on dynamic logic programs.

3 Dependency framework

Idea of nonmonotonic integrity constraints is based on a dependency framework presented in [17]. We
recap the basic features of the framework in this section.

Definition 4 (Dependency relation)A dependency relationis a set of pairsf(L;W) j L 2 Lit , W �Lit ; L 62 Wg. Pairs of the form(L;W) are calleddependencies.
A literal L dependson a set of literalsW , L 62 W , with respect to a programP (L�P W) iff there is

a sequence of ruleshr1; : : : ; rki with k � 1; ri 2 P and

– head (rk) = L,
– W j= body(r1),
– for eachi, 1 < i < k, W [fhead(r1); : : : ; head (ri)g j= body(ri+1).

It is said that the dependency relation�P= f(L;W) j L�P Wg is generatedby the programP . 2
Definition 5 (Closure property) A closure operatorCl assigns the set of all pairsf(L;W) j L � W _(9U (L� U ^ 8L0 2 U nW (L0 �W)))g to a dependency relation�.

A dependency relation� has the closure property iffCl(�) =�.

Proposition 6 LetP be a program. ThenCl(�P) =�P .

Proof: Suppose thatL �P U;8L0 2 U n W L0 �P W . Consider a sequence of rules, satisfying the
conditions of Definition 4 such that eachL0 2 U nW is derived fromW . Concatenate a sequence derivingL fromU . We have provedL�P W ,

The converse inclusion is (yet more) trivial.2
Dependencies on subjective literals are crucial from the viewpoint of stable semantics. Therefore the

role of (default) assumptions is emphasized.

Definition 7 (SSOA, TSSOA)Ass � Subj is called asound set of assumptions(SSOA) with respect to
the dependency relation� iff the setCn�(Ass) = fL 2 Lit j L� Assg [Ass
is non-empty and consistent.

It is said thatAss, a SSOA, istotal (TSSOA) iff for eachA 2 A holds eitherA 2 Cn�(Ass) ornot A 2 Cn�(Ass). 2
Theorem 8 X is a TSSOA w.r.t.�P iff Cn�P (X) is a stable model ofP .

LetS be a stable model ofP . Then there isX � Subj , a TSSOA w.r..t.�P s.t.S = Cn�P (X).
We intend to use our framework for handling conflicting dependencies in a multiprogram. Note that

dependencies in a multiprogram are well defined.

Proposition 9 LetP be a multiprogram. Then�Si2V Pi is well defined. It holds[i2V �Pi��Si2V Pi ;
but the converse inclusion does not hold.

Proof Sketch: Each sequence of rules from
Si2V Pi (which satisfies conditions of Definition 4) determines

a dependency of a literal on a set of literals (w.r.t. the program
Si2V Pi).

It is straightforward to show an example falsifying the converse inclusion.2
Definition 10 (Coherent dependency relation)A dependency relation� is calledcoherentiff there is an
TSSOA w.r.t.�. A dependency relation is calledincoherentiff it is not a coherent one.2

In general,�Si2V Pi can be incoherent. Our approach to semantics of MDyLoP is focused on looking
for sets of assumptions which can serve as a TSSOA w.r.t. a (coherent) subset of given dependency relation�Si2V Pi . A (maximal) coherent subset of an incoherent dependency relation can be considered as a
reasonable semantic view on the dependency relation. Note that more reasonable semantic views on a set of
dependencies are possible (of course, this can be expected –stable model semantics is at the background of
our constructions). Therefore, we are aiming at finding all reasonable TSSOAs w.r.t. some corresponding
subsets of a given dependency relation.

A construction (a non-deterministic algorithm) is described in [17]. We now present the basic idea of
this construction. Later, in Section 5, we extend the construction for the case of nonmonotonic integrity
constraints.

There are essentially two possible sources of incoherence in the union
Si2V Pi:

(1) two conflicting literals depend on a set of literals;
(2) an atomA depends on a set of literalsW andnot A 2W .

Hence, we apply two criteria for constructing a coherent semantic view on a set of dependencies. The
criteria specify which dependencies should be ignored.2

Definition 11 Let a dependency relation� be given. Let a finite setD = f�1; : : : ;�kg, where�i��,
be specified. Suppose that an acyclic, transitive and irreflexive preference relation� onD is defined. If�i;�j2 D and�i � �j , it is said that�j (�i) is more (less) preferred as�i (�j). Similarly, ifd 2�j andd0 2�i, it is said thatd (d0) is more (less) preferred thand0 (d).

1. Let be(L1; L2) 2 CON , d1 = L1 � W , d2 = L2 � W . If d1 is less preferred thand2 then a
minimal set of dependenciesD such thatd1 62 Cl(� nD) is ignored.

2. If A � W , not A 2 W then a minimal set of dependenciesD such that(A;W) 62 Cl(� nD) is
ignored.

Note that criterion 1 corresponds to the CRP, but the other criterion extends the possibilities of solving
conflicts. A more radical extension of our dependency framework is introduced in Section 5 thanks to
nonmonotonic integrity constraints.

Definition 12 LetP be a multiprogram. It is said that�Si2V contains a conflictC (whereC ��Si2V)
iff for someA 2 A isC = f(A; Y); (not A; Y)g orC = f(A; Y)g with not A 2 Y .

It is said that a set of dependenciesD is a solutionof the conflictC iff each d 2 D is of the formL�Pi W andC 6� Cl(�Si2V nD).D, a solution ofC, is calledminimal iff there is no proper subset ofD which is a solution ofC.
Let D andD0 be minimal solutions ofC. It is said thatD0 is more suitablethanD iff 8d 2 D9d0 2D0 ((d0 = L �Pj W) ^ (d = L �Pi W) ^ j � i). A minimal solutionD of a conflictC is calledgood

solutioniff there is no more suitable solution ofC.2
A solution of a conflict is focused on dependencies generatedby a single program. Only elementary

pieces of a chain of dependencies are ignored (dependenciesfrom a�Pi). Good solutions are focused on
less preferred dependencies.

Dependency framework will be finalized in Section 5 after a motivation in next section

4 Motivation

Introduction of nonmonotonic integrity constraints is in [17] motivated by an analysis of some drawbacks
of the CRP. One of the drawbacks is that CRP is not able to recognize alternative solutions of a given
inconsistency (note a striking difference w.r.t. the belief revision research).

2 Our approach does not reject or insert some rules. Its ambition is to provide a coherent view on a (possibly incoher-
ent) MDyLoP (NMKB) by ignoring some dependencies and by accepting some assumptions in the role of integrity
constraints.

Example 13 3 LetP behP1; P2i, where1 � 2.P1 = fa ; b g P2 = fnot a bgRDSM (P) = ffnot a; bgg andReje
tedR(P ; fnot a; bg) = fa g. It is not clear whya can be
rejected andb cannot be rejected. There are two (if we respect the preference relation) maximal coherent
subsets of incoherentP1 [P2 and two corresponding stable models – besidesfnot a; bg alsofnot b; ag.

Notice that the empty set of assumptions justifies inconsistent set of literals. Criterion 1 of Definition 11
enables to create only one coherent subset of�P1[P2 . We have the set of dependencies�P1[P2 as follows:f(a; ;); (b; ;); (not a; fbg); (not a; ;)g. If a�P1 ; is ignored according to criterion 1 of Definition 11 then
the coherent subsetView of�P1[P2 isCl(�P1[P2 nfa�P1 ;g). So we obtainCnView (;) = fb;not ag.
However,fa;not bg is impossible to get in such a way, even if an assumptionnot b is accepted. So, simple
adding of new assumptions does not work as a means for generating alternative solutions of a conflict
illustrated by our example.

If we add assumptionsnot a or not b in the role of (nonmonotonic) integrity constraints, we canget
alternative solutions of the inconsistency considered here. If not b is accepted in the role of an integrity
constraint then justification ofb is blocked and onlya andnot b are justified. Similarly, ifnot a is accepted
then justification ofa is blocked and onlynot a andb are justified.

A formalization of this idea is as follows. We consider two sets of subjective literals, besides assump-
tions also integrity constraints. Let acceptnot b as an integrity constraint (a set of integrity constraints is
denoted byIC) andAss = ; as a set of assumptions.View , a subset of�P1[P2 is obtained by ignor-
ing all dependencies of the formb �P[U W because of the integrity constraint. Finally, we can defineICnView ((IC j Ass)) as the set of all literalsfL j (L;Ass) 2 View ^ not L 62 ICg [Ass [IC , hence
we obtain a reasonable modelfnot b; ag for IC = fnot bg andAss = ;.

Similarly for an integrity constraintnot a.
Note that nonmonotonic integrity constraints are not needed if solutions of conflicts do not respect the

preference relation on dependencies. However, we want to preserve this feature of dynamic logic program-
ming. Moreover, nonmonotonic integrity constraints can beviewed also as concise representations of some
less succinct representations of alternative conflict solutions. This topic should be understood in a more
detail.2

The nature of integrity constraints is nonmonotonic.

Example 14 Suppose that a third, the most preferred, programP3 is added toP from Example 13. Let beP3 = f
 ; a
; b
g and the corresponding multiprogram be denoted byP 0.
It would be natural to reject (nonmonotonic) integrity constraints accepted forP (and also dependencynot a �P2 fbg). The first suggestion could be to reject an integrity constraint if it is “generated” by a

programPi and falsified by a programPj , wherei � j.
Similarly for P 03 = fa not
; b not
g. In this case we will speak about falsification w.r.t. some

(more preferred) assumptions.2
Consider now logic programs with preferences. We sketch only the basic idea – distinguishing the more

preferred assumptions enables to distinguish (and select)more preferred TSSOAs (and, consequently, more
preferred stable models). A detailed exposition of our approach to logic programs with preferences and a
comparison with other approaches is postponed to a future paper.

Example 15 ([7]) This example contains explicit (“classic”) negation and names of rules are used. How-
ever, we believe that there is no problem with tracing the exposition below. Literal:a could be considered
as a new atom, if needed;ni is the name of ruleri, atomn3 � n2 means that ruler2 is more preferred than

3 This example is due to Martin Baláž.

r3. r1 = :a r2 = b :a;not
r3 =
 not br4 = n3 � n2 not d
Program containing rulesr1 – r4 has two regular stable models (answer sets).M1 = f:a; b; n3 �n2;not
;not dg, M2 = f:a;
; n3 � n2;not b;not dg. However,r2 overridesr3, henceM1 is the
only preferred answer set (r2 must be used beforer3, thereforer3 is blocked, it is not applicable).

The same selection of more preferred stable model (TSSOA) can be obtained using the notion of more
preferred assumptions, see Example 16.2

Note that there is a trivial correspondence between logic programs with preferences and multidimen-
sional dynamic logic programs. Consider first static preferences (on rules). If a logic program with prefer-
ences is given as a pair(fri j i 2 Ig;�), then the corresponding MDyLoP we obtain as a set of programs
(singletons)Pi = frig preserving�: Pi � Pj iff ri � rj .

Conversely, let a MDyLoPP be given. IfPi � Pj then for eachr 2 Pi and eachr0 2 Pj holdsr � r0.
Otherwise, rules are incomparable.

If preference relation is a dynamic one (as in Example 15, where it can be modified by rules) then a
dynamic preference relation on programs is needed. A possibility of such extension of MDyLoP is sup-
posed (f.ex. in [1]), but we are not aware of a realization of the possibility. However, it is feasible and
straightforward.

We can now to proceed to an adapted version of Example 15.

Example 16 P1 = f
 not bg;P2 = fa ; b a;not
g:
A straightforward translation from Example 15 is possible,too. Our choice here is to present and analyze
a multiprogramhP1; P2i, with P1 � P2, while preserving the main features of the original program. It
means, the preference ofb a;not
 over
 not b is preserved. What is changed as compared with
Example 15: atoma is used instead of:a, atoms with relational symbol� are not used, so atomd is not
needed. Preference ofa over
 not b is added, but it is not an essential change::a holds in Example
15 in both answer sets.RDSM (hP1; P2i) = ffa; b;not
g; fa;
;not bgg. There are no conflicting rules in this multiprogram and
it is not possible to reject the less preferred model (according to the CRP).

However, the notion of more preferred assumptions enables to select the more preferred answer set
from Example 15.

Observe thatb is justified in the more preferred program. Hence, “it is not knownb” seems not to be
a reasonable assumption. We will consider the assumptionfnot
g as more preferred than assumptionfnot bg. A set of assumptions can be falsified also by a more preferredset of assumptions. In our example:
the assumptionfnot bg is falsified w.r.t. the assumptionfnot
g and dependency relation�P1[P2 . The
more preferred set of assumptions “generates” the more preferred stable model:Cn�P1[P2 (fnot
g) =fa; b;not
g and assumptionfnot bg is falsified inCn�P1[P2 (fnot
g).

There is an intuitive difference between updates and preferences (see [2]). However, themultidimen-
sionalapproach of MDyLoP should represent also “preferential” reasoning. May be, different strategies for
different dimensions are needed. Moreover, there are some problems with very notion of updates, if default
negations are allowed (even in heads of rules), see [17]. Updates of NMKB provide a challenging problem
for future research.2

Formal definitions motivated in this section are introducedin the next section.

5 Nonmonotonic integrity constraints

Definition 17 An assumptionnot A, whereA 2 A, is falsified in a dependency relation� iff A � ;,not A 6� ; and; is a SSOA w.r.t.�.
A set of assumptionsAss � Subj is falsified in� iff it contains a literal falsified in�. 2

Definition 18 Let beS(not A) = fi 2 V j 9r 2 Pi not A 2 body(r)g.
Let beL;L0 2 Subj . The assumptionL is preferred at least asthe assumptionL0 iff for each maximali 2 S(L0) and each maximalj 2 S(L) holds eitheri � j or i k j.L is more preferredthanL0 iff L is preferred at least asL0 and for at least one pairi; j holdsi � j.
A set of subjective literalsS is more preferred than the set of subjective literalsS0 iff eachL 2 S n S0

is preferred at least as eachL0 2 S0 n S and there is anL 2 S n S0 more preferred as eachL0 2 S0 n S.2
Definition 19 LetP = (�;G) be a multiprogram,G = (V;E), let bei; s; t 2 V .

It is said that a set of assumptionsAss is falsified w.r.t.a more preferred set of assumptionsX and a
dependency relationView ��Si�s Pi iff

– X is a TSSOA w.r.t.View ,
– there areL1 2 X andL2 2 Ass such thatnot L2 2 Cn�View (X),
– X is not falsified and it is also not falsified w.r.t. someY and someView 0 ��Si�t Pi , wheres � t,View � View 0, Y is a TSSOA w.r.t.View 0.2

Example 20 Consider Example 16.S(not b) = f1g andS(not
) = f2g, hencenot
 is more preferred
thannot b.

Further,fnot
g is a TSSOA w.r.t.�P1[P2 , it is neither falsified nor falsified w.r.t. a more preferred
set of assumptions and a dependency relation and finally,b 2 Cn�P1[P2 (fnot
g).

Therefore,fnot bg is falsified w.r.t.fnot
g and�P1[P2 .2
We have introduced some new features (for the dependency framework):

– notions of falsification and falsification w.r.t. a set assumptions and a dependency relation,
– preferences on (sets of) assumptions.

We are going to extend the dependency framework by nonmonotonic integrity constraints.
Assumptions with integrity constraints(we will use “i-assumption” as a shorthand) are pairs of the form(X j Y), whereX;Y � Subj . Literals fromX are called (nonmonotonic) integrity constraints.

Definition 21 (ISSOA, ITSSOA) Let (X j Y) be i-assumptions and� be a dependency relation. LetCn�(Y) be a SSOA w.r.t.� andX;Y be not falsified or falsified w.r.t. a set of assumptions and a
dependency relation. ThenICn�((X j Y)) = fL 2 Lit j L 2 Cn�(Y) ^ not L 62 Xg [X

It is said thatICn�((X j Y)) obeys integrity constraintsX . If ICn�((X j Y)) is not empty then(X j Y) is dubbed ISSOA w.r.t.� (ITSSOA in the case of total interpretation).2
A remark: it is straightforward to reconcile notions of SSOA(TSSOA) with ISSOA (ITSSOA);X is an

SSOA w.r.t.� iff (; j X) is an ISSOA w.r.t.�.

Example 22 Remind Example 13.ICnView ((fnot ag j ;)) = fnot a; bg, similarly, ICnView ((fnot bg j;)) = fnot b; ag.2
Similarly, Example 20 can be re-interpreted in terms of ITSSOAs using(;; fnot
g) instead offnot
g.

Of course, some modifications of our formalization are required: Definition 19 have to be modified and a
preference relation on pairs of sets of assumptions have to be defined. It is possible to combine Examples
13 and 16 in order to show that non-empty integrity constraints can play a role in preferential reasoning (in

logic programs with preferences). Nonmonotonic integrityconstraints together with notions of falsification
or falsification w.r.t. to a set of assumptions and a dependency relation enable to recognize more preferred
ITSSOAs and, therefore, more preferred stable models. Application of the dependency framework to a
semantic characterization of logic programs with preferences will be detailed in a forthcoming paper.

6 Semantics based on the dependency framework

Semantics of a multiprogramP in the dependency framework is a mapping� which assigns the set of
pairs of the form((X j Y);View), where(X j Y) is an ITSSOA w.r.t.View , to the multiprogram.

Definition of coherent dependency relation is adapted to ITSSOA in [17]. Our approach to semantics
of MDyLoP described in [17] is focused on looking for i-assumptions which can serve as a(n I)TSSOA
w.r.t. a (coherent) subset of a given dependency relation�Si2V Pi . An ITSSOA (X1 j Y1) is called
a good sound set of assumptions (GSSOA) iff there is no ITSSOA(X2 j Y2) such thatY2 � Y1,
i.e. ITSSOAs with minimal sets of assumptions are preferred. A construction of coherent dependency
relation from an incoherent�Si2V Pi is proposed. The construction is described in terms of a non-
deterministic algorithm. The constructed relation represents – in a sense – a coherent semantic view on
an incoherent multiprogram. The construction is in the spirit of answer set programming: all consequences
are derived from a set of (i-)assumptionsAss via non-conflicting dependencies onAss (integrity con-
straints can block some derivations). If the set of all GSSOAs of a multiprogramP is fZ1; : : : ; Zkg w.r.t.fView1; : : : ;Viewkg, respectively, whereZi = (Xi; Yi), then there is acanonical programof the formfL j L 2 Xig [fL Yi j L 2 ICnView i(Zi)g; i = 1; : : : ; k. It holds that the set of all stable models
of the canonical program coincide with the set of setsfICnView i(Zi) j Zi is a GSOA w.r.t.View ig.

Finally, we present in Figure 1 a modified non-deterministicalgorithm constructing an ITSSOA w.r.t.
a View ��Si2V Pi . It is assumed that there is a set
 containing pairs of the form(Z;View), whereZ are i-assumptions andView is a dependency relation. Initially. i-assumptions are of the form(;; Y),
whereY is neither falsified in�Si2V Pi nor falsified w.r.t. a more preferred set of assumptions andView
is�Si2V Pi . Nonmonotonic integrity constraints are added to i-assumptions by the algorithm. A strategy
for generating nonmonotonic integrity constraintsIC is as follows: if a dependency of an atomA on a set
of literalsW belongs to the setD thennot A is included intoIC ; similarly,View is reduced.

INPUT: a pair(Z;View) from
, whereZ = (X j Y), View ��Si2V Pi
OUTPUT: a pair(ZT ;View), whereZT is an ITSSOA w.r.t.View or the decision that it is not possible to construct
an ITSSOA fromZ
begin

if Z is an ITSSOA w.r.t.View then RETURN(Z;View) fiZT := Z;XT = X;ViewT := View
REPEAT

if ViewT contains a conflictC of ViewT then
SELECT ALL pairs� of the form(IC;D), whereD is a good solution ofC

andIC are integrity constraintsfii := 0;
for each (IC;D) 2 � do

if XT [IC is not falsified or falsified w.r.t. a more preferred set of assumptionstheni := i+ 1; XTi := XT [IC;ZTi := (XTi j Y);ViewTi := Cl(ViewT nD) fi
if i > 1 then
 :=
 [(ZTi ;ViewTi) fi;

odViewT := ViewT1 ;ZT := ZT1 ; XT := XT1
if i = 0 then FAILURE := trueelseFAILURE := falsefi

UNTIL ICnViewT (ZT) is an ITSSOA w.r.t.ViewT or FAILURE
if not FAILURE then RETURN(ZT ;ViewT) elseRETURN FAILUREfi
end

Fig. 1. Non-deterministic algorithm removing conflicts and computing ITSSOAs

7 Discussion, conclusions

First, we will show that integrity constraints introduced in the dependency framework are nonmonotonic
and that our framework enables to distinguish more preferred models (ITSSOAs) of logic programs (with
preferences).

Example 14 illustrates nonmonotony of our integrity constraints. In general, nonmonotonic integrity
constraints can be falsified or falsified w.r.t. more preferred assumptions when some rules are added to the
corresponding multiprogram. This fact follows in a very straightforward way from our framework.

Fact 23 LetP be a multiprogram withG = (V;E). Let(X jY) be ITSSOA w.r.t. aView ��Si2V Pi .
Then(X jY) arenonmonotonici-assumptions in the sense as follows:

– There is a multiprogramP 0, an extension ofP by a programPz, where for eachi 2 V is i � z andView \ �Pz= ;.
– X is falsified (or falsified w.r.t. some i-assumptions(X 0jY 0) and�i2V 0 , whereV 0 = V [fzg).2

Of course, i-assumptions cannot be ITSSOAs if their integrity constraints are falsified.

Fact 24 Let� be a dependency relation. LetX andY be sets of assumptions such that both are SSOAs
w.r.t.�, i.e.Cn�(X) andCn�(Y) are consistent, but for some atomA 2 Cn�(Y) holds thatnot A 2X .

If Y is more preferred thanX andY is neither falsified nor falsified w.r.t. a set of assumptionsand a
dependency relation then(;; Y) is an ISSOA w.r.t.� and(;; X) is not an ISSOA w.r.t.�.

Fact 24 can be generalized to i-assumptions (with non-emptyintegrity constraints).
Main contributions of the paper are as follows. A more detailed analysis of nonmonotonic integrity con-

straints as compared with [17] is given. It is shown also thatour dependency framework enables preference
handling. A modified non-deterministic algorithm for computing ITSSOAs is presented.

The paper is a product of a research devoted to semantics of MDyLoP based on dependencies and as-
sumptions. The semantics is aiming to overcome some drawbacks of semantics based on CRP. Current state
of our research is presented in [17], where the dependency framework is introduced, irrelevant updates are
defined, a coherent semantic view on a multiprogram is specified, a non-deterministic algorithm producing
such coherent view is presented.

Some open problems: Comparisons of other approaches to updates of NMKB and to defeasible rea-
soning (argumentation) from the dependency framework point of view. Comparison with the abductive
framework of [14]. Rethinking relation of updates and revisions in NMKB. It is shown in [17] that pos-
tulates for updates of Katsumo and Mendelzon [10] cannot be understood literally in the context of logic
program updates because of the presence of nonmonotonic assumptions, therefore a much more careful
approach to the difference between updates and revisions isneeded. Also a detailed application of pre-
sented framework to logic programs with preferences and a characterization of computational aspects of
the framework are intended (and needed).

References

1. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.: Dynamic logic programming. In:
Procs. of KR’98. (1998) 98–109

2. Alferes, Pereira Updates and preferences. Proc. of JELIA2000. Springer.
3. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: The refined extension principle for semantics of dynamic logic

programming. Studia Logica1 (2005)
4. Banti, F., Alferes, J.J., Brogi, A., Hitzler, P.: The wellsupported semantics for multidimensional dynamic logic

programs. LPNMR 2005, LNCS 3662, Springer, 356-368
5. Brewka, G.: Well-Founded Semantics for Extended Logic Programs with Dynamic Preferences. Journal of Artifi-

cial Intelligence Research, 4 (1996),19-36
6. Brewka, G., Eiter, T.: Preferred answer sets for extendedlogic programs. Artificial Intelligence, 109 (1-2):297-

356,1999

7. Delgrande, J., Schaub, T., Tompits, H.: A Framework for Compiling Preferences in Logic Programs, Theory and
Practice of Logic Programming 3(2), 2003, pp. 129-187

8. Delgrande, J., Schaub, T., Tompits, H., Wang, K.: A classification of preference handling approaches in nonmono-
tonic reasoning. Computational Intelligence 20:2, 2004, 308-334

9. Gärdenfors, P., Rott, H.: Belief revision. In: Handbookof Logic in Artificial Intelligence and Logic Programming,
vol. 4 (Epistemic and Temporal Reasoning), Claredon Press.Oxford 1995

10. Katsuno, H., Mendelzon, A.O.: On the difference betweenupdating a knowledge base and revising it. Proc. of
KR’91

11. Leite, J.A., Alferes, J.J., Pereira, L.M.: Multi-dimensional dynamic logic programming. In: Procs. of CLIMA’00.
(2000) 17–26

12. Leite, J.A.: Evolving Knowledge Bases: Specification and Semantics. IOS Press (2003)
13. Liberatore, P., Schaerf, M.: The compactness of belief revision and update operators. Fundamenta Informaticae

XX (2004), 1-17, IOS Press
14. Sakama, C., Inoue, K.: Updating extended logic programsthrough abduction. Logic Programming and Nonmono-

tonic Reasoning. LNAI 1730, Springer, 1999
15. Šefránek, J.: Semantic considerations on rejection. In: Procs. of NMR 2004.
16. Šefránek, J.: A Kripkean semantics for logic program updates. : In M. Parigot, A. Voronkov (eds.), Logic for

Programming and Automated Reasoning. Springer 2000, LNAI 1955
17. Šefránek, J.: Rethinking semantics of dynamic logic programming. Submitted.

