Nonmonotonic Integrity Constraints

JanSefranek

Department of Applied Informatics, Faculty of Mathematiefysics and Informatics, Comenius University,
Bratislava, Slovakia, sefranek@fmph.uniba.sk

Abstract. Semantics of multidimensional dynamic logic programmisdraditionally based on the
causal rejection principle: if there is a conflict betweelesuhen the rule from a less preferred program
is rejected. However, sometimes it is useful to solve a adrifietween the heads of rules by blocking
the body of a rule. Moreover, semantics based on the caysatiom principle, is not able to recognize
conflicts, which are not manifested as conflicts between éagl$ of rules.

Nonmonotonic integrity constraints are discussed in thisep. They provide alternative solutions of
conflicts (as compared with solutions based on causal rejegtinciple). Conceptual apparatus intro-
duced in this paper enables also to distinguish more pegfénterpretations and, consequently, it is
relevant for logic programming with preferences. Nonmondt integrity constraints and other notions
introduced in the paper (falsified assumptions, more predesissumptions) contribute to bridging the
gap between research in fields as belief revision or preterbandling on the one hand and multidi-
mensional dynamic logic programming on the other hand.

Keywords: nonmonotonic reasoning, updates, multidimensional dyo&ogic programming

1 Introduction

Multidimensional dynamic logic programming (MDyLoP) [11,112, 3] provides an interesting and promis-
ing approach to representation of dynamic aspects of krigelén the context of logic-based knowledge
representation research. Most semantics of MDyLoP regpeatausal rejection principle (CRP): if the
heads of two rules are conflicting then the less preferrezlisulejected.

Our research [16,15,17] is aiming to overcome some dravhatlCRP. We are focused on as-
sumptions, dependencies on assumptions, conflicts imghssumptions or dependencies. A dependency
framework is introduced [17] in order to be able to handleuag®tions and dependencies explicitly and
to solve also conflicts, which are not manifested as conftietsveen the heads of rules. Nonmonotonic
(defeasible, default) assumptions play a crucial role inmeonotonic reasoning and so the dependency
framework can be useful also for a foundational researctoofmonotonic reasoning and for a comparison
of various approachesto logic program updates (and to siéfeaeasoning/argumentation). In this paper a
more detailed attention is devoted to nonmonotonic intgganstraints introduced in [17]. We address the
topic of removal of nonmonotonic integrity constraintsngsfalsification w.r.t. more preferred assumptions
(the topic has not been detailed in [17]). If nonmonotontegnity constraints, preference on assumptions
and falsification of assumptions are considered then désmgent of MDyLoP with other approaches rele-
vant for updates of nonmonotonic knowledge bases (NMKB)lmnvercome (f.ex. with research in the
fields of belief revision, see [9, 10, 13] and others, or peiee handling, see [7, 8, 5, 6] and others).

Main contributions of the paper: A detailed discussion aimonotonic integrity constraints. A demon-
stration that they are useful for alternative solutions offfticts. It is shown also that other concepts
(preference on assumptions, falsification w.r.t. a set eti@ptions, introduced in order to provide for
nonmonotony of integrity constraints) enable to recognioee preferred stable models. A modified non-
deterministic algorithm for computing a coherent view orepehdency relation is presented.

Roadmap: Basics of multidimensional dynamic logic prograng are recapped in Section 2. Depen-
dency framework is described in Section 3. An introductibimtegrity constraints is motivated in Section
4. After that, in Section 5 the dependency framework is ektelnand a semantics of multidimensional
dynamic logic programs based on the dependency framewsKeished in Section 6. Finally, in Section
7 main contributions of the paper and some open problemsésaed}

! This research has been supported by grants APVV-20-POSEEBA 1/0173/03 and 1/3112/06.



2 Preliminaries

Let A be a set of atoms. The setliérals is defined ad.it = AU {not A : A € A}. Literals of the form
not A, whereA € A are calledsubjective Notation: Subj = {not A | A € A}. We usenot as default
negation, with intuitive meaning “it is not known that . . A.convention:not not A = A.

A rule is each expression of the formn« Ly,..., Ly, wherek > 0, L, L; are literals. Ifr is a rule
of the form as above, theh is denoted byiead (r) and{L1, ..., L} by body(r). A finite set of rules is
calledgeneralized logic prograrfprogram hereafter).

The set ofconflicting literalsis defined asC’ON = {(Ly,L2) | Li = not L»}. Two rulesry,r, are
called conflicting, if(head (r1), head(r2)) € CON. Notation:r; X ro. A set of literalsS is consistentf it
does not contain a pair of conflicting literal$ x S) N CON = (). An interpretationis a consistent set of
literals. Atotal interpretation is an interpretatidnsuch that for each atom eitherA € I or not A € I.
Let I be an interpretation. Thefi- = I N Subj. A literal L is satisfiedin an interpretatiod iff L € 1. A
set of literalsS is satisfied inf iff S C 1.

Definition 1 ([1]) A total interpretatior is astable modebf a programp iff

S =least(PUS™),
wherePU S~ is considered as a Horn theory aldst (P U S ™) is the least model of the theory. A program
is coherentff it has a stable modeld

Definition 2 ([11]) A multidimensional dynamic logic progragalso multiprogramhereafter) is a pair
P = (II,G), whereG = (V, E) is an acyclic digraph|V| > 2, andIl = {P; : i € V} is a set of
(generalized logic) programs.

We denote by < j that there is a path frorto j andi: < j means that < j ori = j. We denote by
i || j thati andj are incomparable w.r.&. If i < j, we say thatP; is more preferredhanP;. O

If G is a path, we speak abodynamidogic program.

Definition 3 (Dynamic stable model, [11])Let P be a multiprogram. A total interpretatiaif is called
dynamic stable modeif P iff

M = least( U P; \ Rejected(P, M)) U Defaults(P, M)), 1)
%

whereRejected(P, M) = {r € P; | Ir' € P; (i < j,r X', M |= body(r'))} and Defaults(P, M) =
{not A|-3r € |J P; (A= head(r), M |= body(r))}.
eV

Refined dynamic stable model is defined in [3] similarly, wtily a little difference — conditiof < j
is used in the definition of rejected rules instead of j. We will use for that modified concept notation
Rejected™ (P, M)). The set of all refined dynamic stable modelghois denoted byR DSM (P). Troubles
with tautological and cyclic updates are overcome in refemmantics. However, the refined semantics is
defined only for dynamic logic programs. Refined semantic$tfe general case of multiprograms is not
known. The well supported semantics of multiprograms isngeffin [4], in order to improve the behaviour
of semantics based on CRP.

We will use refined semantics in the analysis of examples;ibdntain dynamic logic programs. The
well supported semantics for MDyLoP coincides with the rediione on dynamic logic programs.

3 Dependency framework

Idea of nonmonotonic integrity constraints is based on seddency framework presented in [17]. We
recap the basic features of the framework in this section.



Definition 4 (Dependency relation) A dependency relatiors a set of paird(L,W) | L € Lit, W C
Lit, L ¢ W}. Pairs of the form(L, W) are calleddependencies

A literal L depend®n a set of literal$V, L ¢ W, with respect to a progran® (L <p W) iff there is
a sequence of rulgs;,...,r;) withk > 1,r; € P and

— head(ry) = L,
— W = body(ry),
— foreachi, 1 <i <k, WU {head(r1), ..., head(r;)} = body(rit1).

Itis said that the dependency relatiatp= {(L, W) | L <p W} is generatedy the progranP. O

Definition 5 (Closure property) A closure operatorCl assigns the set of all paif§L, W) | L <« W V
FU (LK UAYVYL' e U\W (L' <« W)))} to a dependency relaticg.
A dependency relatiog has the closure property ifl(<) =<.

Proposition 6 Let P be a program. Thef1(<p) =< p.

Proof: Suppose thal «<p U,VL' € U\ W L' «p W. Consider a sequence of rules, satisfying the
conditions of Definition 4 such that eadh € U \ W is derived fromi?¥’. Concatenate a sequence deriving
L fromU. We have proved <p W,

The converse inclusion is (yet more) trivial.

Dependencies on subjective literals are crucial from tleevpdint of stable semantics. Therefore the
role of (default) assumptions is emphasized.

Definition 7 (SSOA, TSSOA) Ass C Subj is called asound set of assumptiofSSOA) with respect to
the dependency relatio iff the set

Cn(Ass) ={L € Lit | L <« Ass} U Ass

is non-empty and consistent.
It is said thatAss, a SSOA, istotal (TSSOA) iff for eachA € A holds eitherA € Cn(Ass) or
not A € Cng(Ass). O

Theorem 8 X is a TSSOA W.r.& p iff Cn, (X) is a stable model aP.
LetS be a stable model d?. Then there isY C Subj, a TSSOAW.r.& p S.t.S = Cng, (X).

We intend to use our framework for handling conflicting degemties in a multiprogram. Note that
dependencies in a multiprogram are well defined.

Proposition 9 LetP be a multiprogram. The«uiev p, is well defined. It holds

U <rc<y
eV

iev P

but the converse inclusion does not hold.

Proof Sketch: Each sequence of rules frigin |, P; (which satisfies conditions of Definition 4) determines
a dependency of a literal on a set of literals (w.r.t. the pgag J, ., P;).
Itis straightforward to show an example falsifying the cerse inclusion

Definition 10 (Coherent dependency relation)A dependency relatiog is calledcoherentiff there is an
TSSOA w.r.t.<. A dependency relation is calléacoherentff it is not a coherent onel



In general,<<Ui€V p, can be incoherent. Our approach to semantics of MDyLoP issiedt on looking
for sets of assumptions which can serve as a TSSOA w.r.the(eat) subset of given dependency relation
LUyey P A (maximal) coherent subset of an incoherent dependenajiace can be considered as a
reasonable semantic view on the dependency relation. Nateltore reasonable semantic views on a set of
dependencies are possible (of course, this can be expestaldle model semantics is at the background of
our constructions). Therefore, we are aiming at findingedisonable TSSOAs w.r.t. some corresponding
subsets of a given dependency relation.

A construction (a non-deterministic algorithm) is desedbn [17]. We now present the basic idea of
this construction. Later, in Section 5, we extend the cawsitin for the case of nonmonotonic integrity
constraints.

There are essentially two possible sources of incohereriteiunion J,., P,

(1) two conflicting literals depend on a set of literals;
(2) an atomA depends on a set of literdlE andnot A € W.

Hence, we apply two criteria for constructing a coherentas®io view on a set of dependencies. The
criteria specify which dependencies should be igndred.

Definition 11 Let a dependency relatiog be given. Let a finite seéb = {<, ..., <}, where<;C <,
be specified. Suppose that an acyclic, transitive and irieflgpreference relatiop on D is defined. If
<, <€ Dand<; p <, itis said that<; (K;) is more (less) preferred ag; (< ;). Similarly, if
d €< andd' €<, itis said thai (d') is more (less) preferred that (d).

1. Letbe(Ly,Ly) € CON,dy = Ly €« W,dy = Ly < W. If d; is less preferred thai, then a
minimal set of dependencid¥ such thatl; ¢ CI(« \D) is ignored.

2. If A < W, not A € W then a minimal set of dependenciBssuch that A, W) ¢ Cl(« \D) is
ignored.

Note that criterion 1 corresponds to the CRP, but the othigrion extends the possibilities of solving
conflicts. A more radical extension of our dependency fraorkvis introduced in Section 5 thanks to
nonmonotonic integrity constraints.

Definition 12 Let P be a multiprogram. It is said th@a:U contains a conflicC (whereC C<y,, )
iff forsome A € AisC = {(A,Y), (not A,Y)}orC = {(A Y)} with not A €Y.

It is said that a set of dependenciBsis a solutionof the conflictC' iff eachd € D is of the form
L <p, WandC Z Cl(<y,,, \D).

D, a solution ofC, is calledminimaliff there is no proper subset @ which is a solution of”.

Let D and D' be minimal solutions o. It is said thatD' is more suitable¢hanD iff Vd € D3d' €
D' ((d =L<p, W)A(d=L <p, W) Aj <i). Aminimal solutionD of a conflictC' is calledgood
solutioniff there is no more suitable solution 6f. O

A solution of a conflict is focused on dependencies genetayeal single program. Only elementary
pieces of a chain of dependencies are ignored (dependdrmies < p,). Good solutions are focused on
less preferred dependencies.

Dependency framework will be finalized in Section 5 after aiwadion in next section

4 Motivation

Introduction of nonmonotonic integrity constraints is ¥¥] motivated by an analysis of some drawbacks
of the CRP. One of the drawbacks is that CRP is not able to rezeglternative solutions of a given
inconsistency (note a striking difference w.r.t. the Hfelwision research).

2 Our approach does not reject or insert some rules. Its asnki#ito provide a coherent view on a (possibly incoher-
ent) MDyLoP (NMKB) byignoring some dependencies and by accepting some assumptions aielu integrity
constraints.



Example 13 3 Let P be(P,, P,), wherel < 2.
P ={a+;b+} Py, = {not a + b}

RDSM(P) = {{not a,b}} and Rejected™ (P, {not a,b}) = {a «}. Itis not clear whyu «+ can be
rejected and < cannot be rejected. There are two (if we respect the prefemnahation) maximal coherent
subsets of incoherei® U P, and two corresponding stable models — besides a, b} also{not b,a}.

Notice that the empty set of assumptions justifies incoesistet of literals. Criterion 1 of Definition 11
enables to create only one coherent subset gf , p, . We have the set of dependenci&s, , p, as follows:
{(a,0), (b,0), (not a, {b}), (not a,P)}.1f a <p, Pisignored according to criterion 1 of Definition 11 then
the coherent subsétiew of < p,up, is Cl(Kp,up, \{a <p, #}). Sowe obtairCn v;e, (0) = {b, not a}.
However{a, not b} is impossible to getin such a way, even if an assumptianb is accepted. So, simple
adding of new assumptions does not work as a means for gampedternative solutions of a conflict
illustrated by our example.

If we add assumptionsot a or not b in the role of (nonmonotonic) integrity constraints, we cgat
alternative solutions of the inconsistency considere@ hiémot b is accepted in the role of an integrity
constraint then justification dfis blocked and only andnot b are justified. Similarly, ifnot a is accepted
then justification of: is blocked and only:ot a andb are justified.

A formalization of this idea is as follows. We consider twdssef subjective literals, besides assump-
tions also integrity constraints. Let acceptt b as an integrity constraint (a set of integrity constraists i
denoted byIC') and Ass = () as a set of assumptioniew, a subset ok p, p, is obtained by ignor-
ing all dependencies of the form< pyy W because of the integrity constraint. Finally, we can define
ICn view ((IC | Ass)) as the set of all literal§L | (L, Ass) € View A not L ¢ IC} U Ass U IC, hence
we obtain a reasonable modelot b, a} for IC = {not b} andAss = 0.

Similarly for an integrity constraintot a.

Note that nonmonotonic integrity constraints are not ndefdgolutions of conflicts do not respect the
preference relation on dependencies. However, we wanegepre this feature of dynamic logic program-
ming. Moreover, nonmonotonic integrity constraints cawiegved also as concise representations of some
less succinct representations of alternative conflicttsmis. This topic should be understood in a more
detail.O

The nature of integrity constraints is nonmonotonic.

Example 14 Suppose that a third, the most preferred, progfars added td? from Example 13. Let be
P; = {c +;a + ¢;b + ¢} and the corresponding multiprogram be denote@®hy

It would be natural to reject (nonmonotonic) integrity coasts accepted foP (and also dependency
not a <p, {b}). The first suggestion could be to reject an integrity caistrif it is “generated” by a
programP; and falsified by a prograrR;, wherei < j.

Similarly for P{ = {a < not ¢;b < not c}. In this case we will speak about falsification w.r.t. some
(more preferred) assumptions.

Consider now logic programs with preferences. We sketchthiel basic idea — distinguishing the more
preferred assumptions enables to distinguish (and sateey preferred TSSOASs (and, consequently, more
preferred stable models). A detailed exposition of our apph to logic programs with preferences and a
comparison with other approaches is postponed to a futyrerpa

Example 15 ([7]) This example contains explicit (“classic”) negation andnea of rules are used. How-
ever, we believe that there is no problem with tracing theosikjpn below. Literalka could be considered
as a new atom, if needed; is the name of rule;, atomns < n, means that rule, is more preferred than

® This example is due to Martin Balaz.



r3.

ry = a <
ro = b < —a, not ¢
rg =c<+ notb

ry = ng < Ng + not d

Program containing rules; — r4 has two regular stable models (answer set$). = {—a,b,ng <
ny, not ¢,not d}, My = {—a,c,ng < na,not b,not d}. However,r, overridesrs, hencel; is the
only preferred answer sety(must be used beforg, thereforer; is blocked, it is not applicable).

The same selection of more preferred stable model (TSSQAbeabtained using the notion of more
preferred assumptions, see Example16.

Note that there is a trivial correspondence between logigigams with preferences and multidimen-
sional dynamic logic programs. Consider first static prfiees (on rules). If a logic program with prefer-
ences is given as a pdifr; | 7 € I}, <), then the corresponding MDyLoP we obtain as a set of programs
(singletons)P; = {r;} preserving<: P; < P; iff r; < rj.

Conversely, let a MDyLOPP be given. IfP; < P; then for eachr € P; and each’ € P; holdsr < r'.
Otherwise, rules are incomparable.

If preference relation is a dynamic one (as in Example 15 revitecan be modified by rules) then a
dynamic preference relation on programs is needed. A pitigsitif such extension of MDyLOP is sup-
posed (f.ex. in [1]), but we are not aware of a realizationhaf possibility. However, it is feasible and
straightforward.

We can now to proceed to an adapted version of Example 15.

Example 16

Py = {c + not b},
P, = {a +;b <+ a,not c}.

A straightforward translation from Example 15 is possild®. Our choice here is to present and analyze
a multiprogram({ Py, P,), with P, < P», while preserving the main features of the original progrém
means, the preference bf— a, not ¢ overc + not b is preserved. What is changed as compared with
Example 15: atoma is used instead ofa, atoms with relational symbe are not used, so atorhis not
needed. Preference @f— overc < not bis added, but it is not an essential changeholds in Example

15 in both answer sets.

RDSM ({Py, P»)) = {{a, b, not c}, {a, ¢, not b}}. There are no conflicting rules in this multiprogram and
it is not possible to reject the less preferred model (adogrth the CRP).

However, the notion of more preferred assumptions enableglect the more preferred answer set
from Example 15.

Observe thab is justified in the more preferred program. Hence, “it is nobwn b” seems not to be
a reasonable assumption. We will consider the assumgtion ¢} as more preferred than assumption
{not b}. A set of assumptions can be falsified also by a more prefegedf assumptions. In our example:
the assumptiofnot b} is falsified w.r.t. the assumptiofnot ¢} and dependency relatiok p, jp,. The
more preferred set of assumptions “generates” the morempeef stable modeln <, ,,, ({not c}) =
{a,b, not c} and assumptiofinot b} is falsified inCn« ., ., ({not c}).

There is an intuitive difference between updates and patas (see [2]). However, tmeultidimen-
sionalapproach of MDyLoP should represent also “preferentiaSming. May be, different strategies for
different dimensions are needed. Moreover, there are sootdégms with very notion of updates, if default
negations are allowed (even in heads of rules), see [17]atésdf NMKB provide a challenging problem
for future researchz

Formal definitions motivated in this section are introduicetthe next section.



5 Nonmonotonic integrity constraints

Definition 17 An assumptiomot A, whereA € A, is falsifiedin a dependency relatiog iff A <« 0,
not A £ () andf) is a SSOA w.r.t<.
A set of assumptiond ss C Subj is falsified in< iff it contains a literal falsified ink. O

Definition 18 LetbeS(not A) = {i € V | Ir € P; not A € body(r)}.

LetbeL, L' € Subj. The assumptioi is preferred at least athe assumptiod’ iff for each maximal
i € S(L") and each maximal € S(L) holds eitheri < j ori || j.

L is more preferredhan ' iff L is preferred at least &' and for at least one pairj holds: < j.

A set of subjective literal$ is more preferred than the set of subjective liteilf each L € S\ S’
is preferred at least as eathe S’ \ S and thereisail € S\ S’ more preferred as eadli € S’ \ S. O

Definition 19 LetP = (II,G) be a multiprogram@ = (V, E), letbei, s, t € V.
It is said that a set of assumptiordss is falsified w.r.t.a more preferred set of assumptiokisand a
dependency relatioWiew C<y, _ p, iff

— X isa TSSOA w.r.t.View,
— there arell; € X andL, € Ass such thatot Ly € Cng,,., (X),
— X is not falsified and it is also not falsified w.r.t. soffieand someView' C<Ly, ., Piv wheres < t,

View C View', Y is a TSSOA w.r.t.View'. O

Example 20 Consider Example 165 (not b) = {1} andS(not ¢) = {2}, hencenot c is more preferred
thannot b.

Further,{not c} is a TSSOA w.rt< p,up,, it is neither falsified nor falsified w.r.t. a more preferred
set of assumptions and a dependency relation and finalyCn < . ., ({not c}).

Therefore{not b} is falsified w.r.t.{not ¢} and< p,yp,. O

We have introduced some new features (for the dependenuogivark):

— notions of falsification and falsification w.r.t. a set asgtions and a dependency relation,
— preferences on (sets of) assumptions.

We are going to extend the dependency framework by nonmaoindtdegrity constraints.
Assumptions with integrity constrair(ise will use “i-assumption” as a shorthand) are pairs of trenf
(X 1Y), whereX,Y C Subj. Literals fromX are called (honmonotonic) integrity constraints.

Definition 21 (ISSOA, ITSSOA) Let (X | Y) be i-assumptions an& be a dependency relation. Let
Cn«(Y) be a SSOA w.rt< and X, Y be not falsified or falsified w.r.t. a set of assumptions and a
dependency relation. Then

ICn (X |Y)={LeLlit|Le Cne(Y)Anot L X}UX

It is said that/Cn«((X | Y')) obeys integrity constraintX . If ICn«((X | Y)) is not empty then
(X |Y) is dubbed ISSOA w.r.&& (ITSSOA in the case of total interpretation).

Aremark: it is straightforward to reconcile notions of SSOESSOA) with ISSOA (ITSSOA)X is an
SSOA w.rt.x iff (| X)is anISSOA w.r.t<.

Example 22 Remind Example 13ICn y;ey (({not a} | #)) = {not a, b}, similarly, ICn y;ey, (({not b} |
0)) = {not b,a}. O

Similarly, Example 20 can be re-interpreted in terms of ID&S using((}, { not c}) instead of not c}.
Of course, some modifications of our formalization are reggliiDefinition 19 have to be modified and a
preference relation on pairs of sets of assumptions have tefined. It is possible to combine Examples
13 and 16 in order to show that non-empty integrity constsaian play a role in preferential reasoning (in



logic programs with preferences). Nonmonotonic integrapstraints together with notions of falsification

or falsification w.r.t. to a set of assumptions and a depecyesiation enable to recognize more preferred
ITSSOAs and, therefore, more preferred stable models. iégtdn of the dependency framework to a

semantic characterization of logic programs with prefeesrwill be detailed in a forthcoming paper.

6 Semantics based on the dependency framework

Semantics of a multiprograr® in the dependency framework is a mappibgwhich assigns the set of
pairs of the form((X | Y), View), where(X | ) is an ITSSOA w.r.t.View, to the multiprogram.
Definition of coherent dependency relation is adapted t&BIDA in [17]. Our approach to semantics
of MDyLoP described in [17] is focused on looking for i-asqutions which can serve as a(n I)TSSOA
w.rt. a (coherent) subset of a given dependency relatgn_  p,. An ITSSOA (X1 | Y1) is called
a good sound set of assumptions (GSSOA) iff there is no ITS$®A | Y>) such thaty, C Y,
i.e. ITSSOAs with minimal sets of assumptions are preferfedonstruction of coherent dependency
relation from an incoheren(<Ui€Vpl. is proposed. The construction is described in terms of a non-
deterministic algorithm. The constructed relation reprgés — in a sense — a coherent semantic view on
an incoherent multiprogram. The construction is in theispiranswer set programming: all consequences
are derived from a set of (i-)assumptiodss via non-conflicting dependencies otss (integrity con-
straints can block some derivations). If the set of all GSS©RAa multiprogran® is {Z, ..., Z;} w.r.t.
{View:,. .., Viewy}, respectively, where; = (X;,Y;), then there is &anonical progranmof the form
{L+|LeX;}U{L+Y;|LE€ICnviw (Z;)},i =1,...,k Itholds that the set of all stable models
of the canonical program coincide with the set of e v, (Z;) | Z; is a GSOA w.r.t.View;}.
Finally, we present in Figure 1 a modified non-determiniatgorithm constructing an ITSSOA w.r.t.
a View CLy,, p,- It is assumed that there is a g@tcontaining pairs of the forniZ, View), where
Z are i-assumptions anfiew is a dependency relation. Initially. i-assumptions arehef form ((}, V"),
whereY is neither falsified in<<UZ_EV p, nor falsified w.r.t. a more preferred set of assumptions i
is LYoy Pr- Nonmonotonic integrity constraints are added to i-asgiomg by the algorithm. A strategy
for generating nonmonotonic integrity constraifs is as follows: if a dependency of an atofnon a set
of literalsW belongs to the s&b thennot A is included into/C'; similarly, View is reduced.

INPUT: a pair(Z, View) from 2, whereZ = (X | Y), View C<,_,, p;
OUTPUT: apair(Z”, View), whereZ™ is an ITSSOA w.r.t.View or the decision that it is not possible to construct
an ITSSOA fromZ
begin
if Z is an ITSSOA w.r.t.View then RETURN(Z, View) fi
ZT .= 7, XT = X, ViewT := View
REPEAT
if View™ contains a conflicE of View™ then
SELECT ALL pairsr of the form(IC, D), whereD is a good solution o
andIC are integrity constraints
1:=0;
foreach (IC,D) € = do
if X U IC is not falsified or falsified w.r.t. a more preferred set ofumsptionsthen
i=i4+1; X :=XTuIC; 2] .= (XT | Y); View] := Cl(View™ \ D) fi
if i >1then 2 := QU (Z7], View?) fi;
od
ViewT = View?; zT = zT, xT .= xT
if i = 0 then FAILURE := trueelseFAILURE := falsefi
UNTIL ICny,.,r(Z7T)is an ITSSOA w.r.tView” or FAILURE
if not FAILUREthen RETURN(ZT, Vz‘ewT) elseRETURN FAILUREfi
end

Fig. 1. Non-deterministic algorithm removing conflicts and conipgti TSSOAs



7 Discussion, conclusions

First, we will show that integrity constraints introducedthe dependency framework are nonmonotonic
and that our framework enables to distinguish more predlemredels (ITSSOAS) of logic programs (with
preferences).

Example 14 illustrates nonmonotony of our integrity coaisis. In general, nonmonotonic integrity
constraints can be falsified or falsified w.r.t. more prefdrmassumptions when some rules are added to the
corresponding multiprogram. This fact follows in a vernyagghtforward way from our framework.

Fact 23 LetP be a multiprogram withG = (V, E). Let(X|Y") be ITSSOA w.r.t. iew C<LY;ey Pi-
Then(X|Y) are nonmonotonié-assumptions in the sense as follows:

— There is a multiprogran®’, an extension oP by a programP.,, where for each € V' isi < z and
View N < p, = 0.
— X is falsified (or falsified w.r.t. some i-assumptiqd§'|Y"’) and <;cy/, whereV' =V U {z}). O

Of course, i-assumptions cannot be ITSSOAs if their intggidonstraints are falsified.

Fact 24 Let < be a dependency relation. Lat andY be sets of assumptions such that both are SSOAs
W.rt. &, i.e. Cn«(X) and Cn(Y') are consistent, but for some atafne Cn (YY) holds thatnot A €
X.

If Y is more preferred thatk’ andY” is neither falsified nor falsified w.r.t. a set of assumptiand a
dependency relation thel, ) is an ISSOA w.r.t and (@, X) is not an ISSOA w.r.&.

Fact 24 can be generalized to i-assumptions (with non-emfagrity constraints).

Main contributions of the paper are as follows. A more dethénalysis of nonmonotonic integrity con-
straints as compared with [17] is given. It is shown also thatdependency framework enables preference
handling. A modified non-deterministic algorithm for conipg ITSSOAs is presented.

The paper is a product of a research devoted to semantics gL bPbased on dependencies and as-
sumptions. The semantics is aiming to overcome some draslohsemantics based on CRP. Current state
of our research is presented in [17], where the dependeanyefivork is introduced, irrelevant updates are
defined, a coherent semantic view on a multiprogram is spelcii non-deterministic algorithm producing
such coherent view is presented.

Some open problems: Comparisons of other approaches teespofaNMKB and to defeasible rea-
soning (argumentation) from the dependency frameworktpafiview. Comparison with the abductive
framework of [14]. Rethinking relation of updates and remis in NMKB. It is shown in [17] that pos-
tulates for updates of Katsumo and Mendelzon [10] cannotigerstood literally in the context of logic
program updates because of the presence of nonmonotonimpissns, therefore a much more careful
approach to the difference between updates and revisiomseided. Also a detailed application of pre-
sented framework to logic programs with preferences andagackerization of computational aspects of
the framework are intended (and needed).

References

1. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusindia Przymusinski, T.C.: Dynamic logic programming. In:
Procs. of KR'98. (1998) 98-109

2. Alferes, Pereira Updates and preferences. Proc. of JERO®. Springer.

3. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: The refihextension principle for semantics of dynamic logic
programming. Studia Logich(2005)

4. Banti, F., Alferes, J.J., Brogi, A., Hitzler, P.: The wellpported semantics for multidimensional dynamic logic
programs. LPNMR 2005, LNCS 3662, Springer, 356-368

5. Brewka, G.: Well-Founded Semantics for Extended LogagPams with Dynamic Preferences. Journal of Artifi-
cial Intelligence Research, 4 (1996),19-36

6. Brewka, G., Eiter, T.: Preferred answer sets for exterdgid programs. Artificial Intelligence, 109 (1-2):297-
356,1999



~

10.

11.

12.
13.

14.

15.
16.

17.

. Delgrande, J., Schaub, T., Tompits, H.: A Framework fom@iting Preferences in Logic Programs, Theory and

Practice of Logic Programming 3(2), 2003, pp. 129-187

. Delgrande, J., Schaub, T., Tompits, H., Wang, K.: A cfastion of preference handling approaches in nonmono-

tonic reasoning. Computational Intelligence 20:2, 20@8-334

. Gardenfors, P., Rott, H.: Belief revision. In: Handbadk ogic in Artificial Intelligence and Logic Programming,

vol. 4 (Epistemic and Temporal Reasoning), Claredon P@sfard 1995

Katsuno, H., Mendelzon, A.O.: On the difference betwepdating a knowledge base and revising it. Proc. of
KR'91

Leite, J.A., Alferes, J.J., Pereira, L.M.: Multi-dimgonal dynamic logic programming. In: Procs. of CLIMA0O.
(2000) 17-26

Leite, J.A.: Evolving Knowledge Bases: Specificatiod &mantics. 10S Press (2003)

Liberatore, P., Schaerf, M.: The compactness of bedigsion and update operators. Fundamenta Informaticae
XX (2004), 1-17, 10S Press

Sakama, C., Inoue, K.: Updating extended logic progtamasigh abduction. Logic Programming and Nonmono-
tonic Reasoning. LNAI 1730, Springer, 1999

éefrének, J.: Semantic considerations on rejection. riocs? of NMR 2004.

Sefranek, J.: A Kripkean semantics for logic program ueslat: In M. Parigot, A. Voronkov (eds.), Logic for
Programming and Automated Reasoning. Springer 2000, L9851

Sefranek, J.: Rethinking semantics of dynamic logic progning. Submitted.



