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tThe paper is devoted to dynami
 and 
ontext-dependent aspe
ts ofknowledge and reasoning. The main attention is fo
used on a relationshipbetween belief revision and inferen
e.Dynami
 Kripke Stru
tures (DKS) are introdu
ed in the paper. Intu-itively, DKS 
onsists of a dynami
 part and a stati
 part (a usual KripkeStru
ture). The elements of the dynami
 part map a set of possible worldson itself. A uni�ed view on 
ontext-dependent and non-monotoni
 rea-soning { based on Dynami
 Kripke Stru
tures { is dis
ussed.In order to motivate DKS we introdu
e a set of postulates (a Dynami
Belief Model, DBM) in a style similar to G�ardenfors' approa
h { propo-sitions are treated as modi�
ations of belief sets. Non-
ommutativity of
onjun
tion and non-monotoni
ity of inferen
e are the main results 
on-
erning DBM . A semanti
s of DBM is studied and generalized to DKS.1 INTRODUCTIONUnderstanding dynami
 and 
ontext-dependent aspe
ts of knowledge andreasoning is of 
ru
ial importan
e for arti�
ial intelligen
e resear
h.A substantial feature of intelligen
e is an ability to 
hange beliefs,and to reason 
orre
tly with the 
hanged beliefs (in various 
ontexts).1



Belief revision and non-monotony of reasoning are examples of some fun-damental problems 
onne
ted with the dynami
s and 
ontext-sensitivityof reasoning.The main idea of the paper is a 
on
ept of Dynami
 Kripke Stru
ture.We hope that the 
on
ept is an useful tool for a (unifying) semanti
 
har-a
terization of dynami
 and 
ontext-dependent aspe
ts of knowledge and(non-monotoni
, hypotheti
al) reasoning.A Dynami
 Kripke Stru
ture (DKS) 
onsists of two 
omponents { astati
 one (a Kripke Stru
ture) and a dynami
 one (a set of transforma-tions). Intuitively, DKS enables to spe
ify a 
hange (or a stability) ofbelief when transitions from one 
ontext to another are 
aused by someevents. The 
ontexts are represented by Kripke stru
tures, the events bythe transformations.A Kripke Stru
ture 
onsists of two 
omponents. The �rst is a set ofstates of the world (some alternative intuitions: possible worlds, 
ontexts,sets of belief sets). The se
ond are some a

essibility relations betweenpossible worlds. The a

essiblity provides, in a sense, a relaxation of theintuitive idea of the state of the world: the state may be des
ribed inan in
omplete way and the a

essible worlds (epistemi
 alternatives) are
onsistent with the des
ription.Transformations between possible worlds we 
an imagine as 
hangesin believed hypotheses or as transitions from one (set of) 
ontext(s) toanother (set of) 
ontext(s). The a

essibility relation between possibleworlds may be 
hanged by the transformation signi�
antly.Before we introdu
e the 
on
ept of DKS in a rigorous way we willinvestigate a sequen
e of 
onstru
tions. The main reason is to motivatewell DKS.First, in Se
tions 2 { 4 we try to use and explore an idea of G�ardenfors,see [2℄. Propositions are 
onsidered as fun
tions from belief states to beliefstates. An appli
ation of a proposition to a belief state is 
on
eived in [2℄as an addition of new eviden
e into the resulting belief state. Conjun
tionof propositions is de�ned as 
omposition of fun
tions and it is obvious thatthe 
onjun
tion (as 
omposition of insertions) is 
ommutative.We extend this view: if a proposition maps an original belief stateinto a resulting belief state, we assume that the resulting belief state may
ontain some new information and that some information from the originalbelief state may be deleted.We investigate the 
onsequen
es of this de
ision: 
onjun
tion of propo-sitions is non-
ommutative and a 
onsequen
e relation (de�ned in thesame way as in the [2℄) is non-monotoni
. Let us note that this non-monotony is an obvious 
onsequen
e of some basi
 properties 1 of beliefrevisions and 
ontext-dependent reasoning. A set of postulates is proposedin order to formalize the idea.In Se
tion 5 we provide a semanti
s appropriate for our postulates. Weassign interpretations to belief sets and some mappings (from interpreta-1\. . . non-monotoni
 behaviour . . . is a symptom, rather than the essen
e of non-standardinferen
e", see [8℄.



tions to interpretations) to propositions. We prove that our postulatesare satis�ed in the semanti
s. Furthermore, we prove a representationtheorem: we 
an assign (in a unique way) to ea
h proposition a mappingfrom interpretations to interpretations.The result is interesting in its own right. But our goal is to moti-vate the introdu
tion of more general Dynami
 Kripke Stru
tures. Inthe rest of the paper we generalize the semanti
 
onstru
tions in orderto introdu
e DKS. A non-monotoni
 
onsequen
e relation was intro-du
ed in a simple model of belief revision (in the DBM). Our goalis to generalize the semanti
s of DBM and to 
reate a semanti
 basis(the DKS) for more general treatment of non-monotoni
 (hypotheti
al,
ontext-dependent, non-standard) inferen
e.2 POSTULATESWe will distinguish two kinds of entities, propositions and belief states.Let P be a set of propositions and K be a set of belief states. A;B;C;D; Iwill be used as variables over P, K (with subs
ripts or supers
ripts) willbe used as variables over K.Propositions are mappings from belief states to belief states. If weapply a proposition (fun
tion) A to a belief state K, then A(K) representsthe resulting belief state.Now, some postulates are presented. 2 First, we a

ept a part ofG�ardenfors' postulates (from [2℄).(P1) For every A and K there is K0 su
h that A(K) = K0(P2) There is a proposition I su
h that for ea
h K holds I(K) = K(P3) For every A;B exists a proposition A ^ B su
h that for every Kholds A ^B(K) = A(B(K))(P4) For every A and K holds A ^A(K) = A(K)Some de�nitions, before we supplement the set of postulates.De�nition 1 A partial order is a re
exive, antisymmetri
 and transitiverelation.Let L be a set and � be a partial order on L. (L;�) is a latti
e, if forea
h a; b 2 L there is a least upper bound, denoted by at b, and a greatestlower bound, a u b. 32Intuitions and motivations are dis
ussed in the Se
tion 3. The both se
tions 
ould beread in parallel.3A relation � � S � S (� is said to be a relation on S) is� re
exive if for ea
h a 2 S holds (a; a) 2 �� antisymmetri
, if for a; b su
h that (a; b) 2 � and (b; a) 2 � holds a = b� transitive, if holds (a; 
) 2 �, whenever (a; b) 2 � and (b; 
) 2 �.An element x 2 L is 
alled upper (lower) bound of a; b, if a � x and b � x (x � a and x � b).If y is an upper (lower) bound of a; b and for ea
h upper (lower) bound x of a; b holds thaty � x (x � y) then y is 
alled the least upper (greatest lower) bound of a; b.



If for a 2 L and for ea
h x 2 L holds a � x (x � a), then a is theleast (greatest) element of L.De�nition 2 (Con
i
ting fun
tions) Let L be a latti
e with the leastelement ? and the greatest element >. Let A 6= I 6= B be fun
tions fromL to L, where I is the identity fun
tion.We say that A;B are 
on
i
ting, if the 
onditions as follows are sat-is�ed:(1) A(?)tB(>) = > = A(>)t B(?)(2) A(?)uB(>) = ? = A(>)u B(?)Now, the rest of our postulates:(P0) K is a latti
e with the least (K?) and the greatest (K>) element.(P5) For every A there is B su
h that A;B are 
on
i
ting propositions.(P6) For every A and every K holds A(K) = (K tA(K?)) u A(K>)Proposition 1 For every A and K;K0 , if K � K0 then A(K) � A(K0)Proof: Straightforward. 4 2Proposition 2 If A;B are 
on
i
ting, then 8K:(A(K?) � B(K) �A(K>)).Proof: Let us assume A(K?) � B(K) � A(K>) for some K. Hen
eA(K?)tB(K>) � B(K)tB(K>) � A(K>)tB(K>). From the de�nitionof 
on
i
ting fun
tions and from the proposition 1 follows B(K>) = K>.Similarly, A(K?) u B(K?) � B(K) u B(K?) � A(K>) u B(K?).Therefore, B(K?) = K?.For ea
h K: B(K) = (K t B(K?)) u B(K>) = (K t K?) u K> =K. Therefore, B = I (in 
ontradi
tion with the de�nition of 
on
i
tingfun
tions). 2De�nition 3 (Consequen
e relation) Let be K 2 K and A;B 2 P.Then Aj� B i� 8K(B ^A(K) = A(K)). We say that B is a 
onsequen
eof A.We note that in this paper only a poor language is 
onsidered 5We will assume that propositions and belief states are sets P and Ksatisfying the 
onditions P0 { P6. Ea
h set of propositions and beliefstates satisfying P0 { P6 is 
alled Dynami
 Belief Model (DBM).4Complete proofs are in the full version of the paper.5Similarly, Makinson in [5℄ makes no referen
e to the parti
ular 
hoi
e of 
onne
tives.



3 INTUITIONSIn this se
tion we give some additional explanations, motivations, andintuitions.Example 1 We 
onsider a propositional database (a store of proposi-tional symbols) together with the basi
 update operations - insert anddelete.Let a 
ountable set of symbols S be given (an alphabet of the proposi-tional logi
).Let K, the set of all belief states, be the set of all subsets of S (a beliefstate is an instan
e of the propositional database). A partial order on Kis the subset relation. The greatest lower (least upper) bound of two setsis their interse
tion (union).The set of all propositions P is de�ned as the set of all pairs (ins(�); del(	))6 , where � and 	 are subsets of S and � \	 = ;.Let be I = (ins(;); del(;)), K? = ;, K> = S.Appli
ation of a proposition A = (ins(�); del(	)) to a belief state Kis represented as the belief state (K [ �) n	.For A = (ins(�); del(	)) and B = (ins(�0); del(	0)) we de�ne B ^Aas (ins((� [ �0) n	0); del((	 [	0) n �0 ).There is no problem to show that the postulates P0 { P6 are satis�edin this example.We restri
t our attention to the postulate P5. (As a 
onsequen
e, itwill be shown that our 
onjun
tion is non-
ommutative.)Let A;B be propositions. Let us assume that A = (ins(fd; eg); del(fag)); B =(ins(fag));del(fd; eg)). Clearly, A;B are 
on
i
ting: A(K?) t B(K>) = A(;) tB(S) = fd; eg [ (S n fd; eg) = S = B(;) t A(S). Similarly, A(K?) uB(K>) = ; = B(;) u A(S). It is straightforward to show that for ea
h Athere is a B su
h that A;B are 
on
i
ting.In the next se
tion we will show that a 
onjun
tion of two 
on
i
tingpropositions is non-
ommutative, see Proposition 3. In our example, e 2A ^ B(K) for ea
h K and e 62 B ^A(K) for ea
h K.Now some additional 
omments and explanations to postulates P0 {P6 follow.(P0) We assume that there is a hierar
hy of belief states:� a belief state 
an be extended to a more ri
h belief state (orrestri
ted to a more poor belief state)� a useful abstra
tion is an initial, or empty, belief state; similarly,a �nal belief state joining all belief states� the 
ondition that for two given belief states there is the greatestlower (least upper) bound is a more restri
tive one (it assumesa kind of 
ompleteness of the set of belief sets); in the 
on
lu-sions of this paper we dis
uss the need of a more general set ofpostulates6ins is intended to represent the insert operation, del delete.



(P1) Propositions are mappings from belief states to belief states (aproposition stated in a belief state results in a new belief state).Nevertheless, propositions and members of belief states are not ne
-essary identi
al entities.(P2) There is a proposition whi
h 
auses no 
hange of ea
h belief state.It is 
alled the identity proposition.(P3) There is a proposition de�ned by two su

essive appli
ations oftwo propositions. The 
orresponding operation on propositions isdenoted by ^ (and 
alled 
onjun
tion). The set of all propositionsis 
losed under 
onjun
tion.(P4) The repeated appli
ation of the same proposition gives nothing new.(P5) For ea
h revision (insert or delete) there is a 
omplementary revision(in a sense). If A;B are 
on
i
ting, then insertion represented by oneof them and removal represented by the other are 
omplementary.(P6) For ea
h proposition A and ea
h belief state K the value of A(K)
an be 
omputed from the \representative" appli
ations of A (i.efrom A(K>) and A(K?)) and from K.4 BASIC PROPERTIESProposition 3 (Non-
ommutativity of 
onjun
tion) If A;B are 
on-
i
ting, then8K(A ^B(K) 6= B ^A(K))Proof: Let us assume that A ^ B(K0) = B ^ A(K0) for some K0. Fromthe proposition 1 follows A(K?) � A^B(K0) � A(K>). Hen
e, A(K?) �B ^ A(K0) � A(K>). Contradi
tion with the proposition 2. 2Proposition 4 If A;B are 
on
i
ting propositions and Cj � A, then8K(C ^B(K) 6= B ^ C(K)).Proof: Let be C ^ B(K0) = B ^ C(K0). Hen
e, A ^ B(C(K0)) =A^C(B(K0)) = C^B(K0) = B^C(K0) = B^A(C(K0)). Contradi
tion{ A;B are not 
ommutative a

ording to the proposition 3. 2The main theorem of this se
tion expresses the non-monotony of thej�-relation.Theorem 1 (Non-monotony of 
onsequen
e relation) If Aj � D,D 6= I, and B;D are 
on
i
ting, then :(B ^Aj� D)Proof: From the Proposition 3 follows that for ea
h K holds B^D(K) 6=D ^ B(K). Therefore, for some K0, D ^ B(A(K0)) 6= B ^ D(A(K0)) =B(A(K0)) 2Example 2 A;B are de�ned as in the Example 1, C = (ins(fd; e; gg); del(fag),hen
e Cj� A. It is straightforward to show that B ^ Cj� A does nothold: Let K be fa; b; 
g, then B ^ C(K) = fa; b; 
; gg but A(B ^ C(K)) =fb; 
; d; e; gg.



Now we will dis
uss the properties(G2u) Aj� x whenever Aj� y, A [ fygj� x(G30u) A [ fygj� x whenever Aj� y, Aj� xstated and studied in [5℄, see also [1℄. G2u, and G30u are intended to be (apart of the) 
onditions whi
h should satisfy any reasonable formalizationof a non-monotoni
 
onsequen
e relation.We present analogies of G2u and G30u.Theorem 2 If Aj� B and B ^ Aj� C, then Aj� C.Theorem 3 If Aj� B and Aj� C, then B ^Aj� C.5 SEMANTICSWe assign interpretations to the belief sets and a

essibility relations be-tween the interpretations to the propositions.De�nition 4 (Interpretations) Let S be a set of propositional symbols.An interpretation is a pair (T; F ), where T; F � S. An interpretation is
alled 3-interpretation whenever it satis�es the 
ondition T \ F = ;. A3-interpretation su
h that T [ F = S is 
alled 2-interpretation.Notation: We denote the set of all interpretations as Int, the set of all2-interpretations as Int2, the set of all 3-interpretations as Int3. We intro-du
e proje
tions of interpretations true and false: true((T; F )) = T andfalse((T;F )) = F . For 2-interpretations it holds that false((T;F )) =S n true((T;F )). Therefore, ea
h (T; F ) 2 Int2 may be represented as Tand we may 
onsider the operations on sets (\, [) as de�ned on Int2.Now we de�ne a mapping from belief sets to 2-interpretations.De�nition 5 (Assignment of interpretations to belief sets) Let I :K �! Int2 be a mapping that for ea
h K1; K2 satis�es the 
onditions:� K1 6= K2 ) I(K1) 6= I(K2)� I(K1 tK2) = I(K1) [ I(K2)� I(K1 uK2) = I(K1) \ I(K2)� I(K?) = (;;S) and I(K>) = (S; ;)Note: I is de�nable onK and S, if 
ard(K) � 
ard(2S), where 
ard(X)denotes the 
ardinality of the set X.De�nition 6 (Possible worlds) WI = f(T; F ) 2 Int2 : 9K(I(K) =(T; F ))g is 
alled I-image of K.Note: Elements of WI may be 
alled possible worlds. WI is a latti
ewith the least and the greatest element. I is an isomorphism of K andWI .



De�nition 7 (A

essibility relations) (a) Let be (T; F ) 2 Int3 and(T1; F1); (T2; F2) 2 Int2. We say that (T1; F1) is (T; F )-a

essiblefrom (T2; F2) i�(a1) T1 = (T2 [ T ) n F(a2) F1 = (F2 [ F ) n T(b) Let be A 2 P;K 2 K; I(K) = (T2; F2). (T1; F1) is 
alled A-a

essiblefrom (T2; F2) i� I(A(K)) = (T1; F1).Note: We use 3-interpretations as a tool for a representation of 
hanges.Intuitively, members of T 
hange to true, members of F 
hange to falseand things 
hange only when they are for
ed to (there is no 
hange spe
-i�ed for symbols not in T or F ).Observation 1 If (T2; F2) 2 Int2, (T; F ) 2 Int3 and T1 = (T2 [ T ) nF; F1 = (F2 [ F ) n T , then T1 \ F1 = ; and T1 [ F1 = S. (The de�nition7 is 
orre
t.)Observation 2 For ea
h (T1; F1); (T2; F2) 2 Int2 there is a (T; F ) 2Int3 su
h that (T1; F1) is (T; F )-a

essible from (T2; F2).Proposition 5 Let (T1; F1); (T2; F2) be given and T = T1nT2; F = T2nT1.If (T 0 ; F 0) satis�es both 
onditions (a1); (a2), then T � T 0 ; F � F 0 .Proof: Let x 2 T , i.e. x 2 T1 ^ x 62 T2. From x 2 T1 follows x 62 F 0 .Therefore, x 2 T 0 .Similarly, for x 2 F holds x 2 T2 ^ x 62 T1. If x 62 F 0 , then x 2 T1(be
ause of x 2 T2) { 
ontradi
tion. 2Note: T = T1 n T2 and F = T2 n T1 are 
alled the minimal solutions ofthe 
onditions (a1); (a2) from the de�nition 7.Theorem 4 (A representation theorem) For ea
h K;K0 and ea
h Athere is exa
tly one minimal (T; F ) 2 Int3 su
h thatI(K) is (T; F )-a

essible from I(K0 ) i� K = A(K0).Proof: Existen
e:(We assume that K = A(K0). Hen
e, I(K) is A-a

essible from I(K0 ).From the postulate P6 and the de�nition of interpretation follows I(K) =I(A(K0)) = I((K0tA(K?))uA(K>)) = (I(K0)[I(A(K?)))\I(A(K>).Let us denote I(A(K?)) as (T;S nT ) and I(A(K>)) as (S nF; F ). There-fore, true(I(K)) = (true(I(K0))[T )nF . Similarly for false(I(K0)), i.e.I(K) is (T; F )-a

essible from I(K0)Minimality follows from the Proposition 5: true(I(A(K?)) = true(I(A(K0))ntrue(I(K0) and false(I(A(K>)) = true(I(K0) n true(I(A(K0)).)If A(K0) 6= K, then I(K) 6= (I(K0)[I(A(K?)))\I(A(K>)). There-fore, true(I(K)) 6= (true(I(K0))[T )nF or false(I(K)) 6= (false(I(K0))[F ) n T . Hen
e I(K) is not (T; F )-a

essible from I(K0 ). 2



Note: The representation theorem shows that ea
h proposition A of aDBM 
an be represented by a pair (T; F ) 2 Int3 and this representationis unique if we 
onsider minimal interpretations only.De�nition 8 If A 2 P and (T; F ) 2 Int3 satisfy the representation the-orem, then we say that (T; F ) is assigned to A.Note: (T; F ) is determined uniquely by the Minimality 
ondition (a
-
ording to the representation theorem).Consequen
e 1 Let (TA; FA) be assigned to A. If K1 is A-a

essiblefrom K?, then I(K1) = (TA;S n TA). If K2 is A-a

essible from K>,then I(K2) = (S n FA; FA).Let us investigate the relation between DBM and 3-interpretations
loser.De�nition 9 A

 = f((w;w1); w2) : w1; w2 2 WI ; w 2 Int3 is minimalinterpretation su
h that w2 is w-a

essible from w1gLemma 1 Ea
h � 2 A

 is a fun
tion (of the type Int3 �WI �!WI):for ea
h w1 2 WI and w 2 Int3 there is exa
tly one w2 2 WI su
h thatw2 is w-a

essible from w1.Theorem 5 If K =WI and P = A

, then postulates P0�P6 of DBMare satis�ed.De�nition 10 Let be (T; F ); (T 0 ; F 0) 2 Int3. (T; F ) is stronger than(T 0 ; F 0) i� T 0 � T; F 0 � F .Observation 3 T \ F 0 = ;, F \ T 0 = ;.Proposition 6 If A;B 2 P and (TA; FA); (TB; FB) 2 Int3 are assignedto A;B, respe
tively, then Aj� B i� (TA; FA) is stronger than (TB ; FB).6 SEMANTICS { REFINEMENTSWe have 
losed the �rst part of the paper. In order to progress, let usdis
uss the basi
 intuitions, summarize the results and the 
urrent stateof our exposition and outline a perspe
tive.Our main ambition is to provide a semanti
s suitable for formalizationsof dynami
 aspe
ts of knowledge and reasoning. The stati
 pi
ture ofknowledge and reasoning was in the pre
eding se
tions identi�ed withbelief sets. A 
omplete list of atoms (quali�ed as true or false) was assignedto a belief set and it determines in a unique way the set of true formulae(for the given belief set).A dynami
s is introdu
ed if we 
onsider 
hanges of belief sets (rep-resented here by some transformations, mappings). Intuitively, the dy-nami
s 
orresponds to a generation of new senten
es (hypotheses) or to aretra
tion of some hypotheses. Of 
ourse, the new knowledge has usuallya preliminary status, it is open to some future revisions.



The model of DBM is very simple and a rudimentary one. We havea uniform and ri
h stru
tured universe of belief sets, to ea
h of them isassigned a 
omplete 2-interpretation and transformations between beliefsets 
orrespond to simple insertions and removals (we are not worriedabout the permissibility of these operations in a given state).The semanti
s from the Se
tion 5 is very similar to the formal se-manti
s of Dynami
 Logi
 Programming, see [6℄. The dynami
 meaningfun
tion of [6℄ assigns to ea
h dynami
 predi
ate symbol a fun
tion fromground terms to the binary relations on a set of states (or, equivantely, afun
tion that assigns a binary relation on a set of states to ea
h groundproposition). A-a

essiblity of the Se
tion 5 assigns to propositions fun
-tions from belief states to belief states.Our semanti
s 
an be 
hara
terized by the pair (WI ; fRA : A 2 Pg),where fRA : A 2 Pg is the set of a

essibility relations determined byA 2 P. Therefore, we have a kind of Kripke stru
ture as an appropriatesemanti
s for the DBM .Now, our aim is to outline how to 
ompli
ate (generalize, re�ne) thispi
ture. We 
an a

ept more weak or more 
ompli
ated stru
ture of theuniverse of belief sets. Interpretations of belief sets 
an be more general{ three or four valued { therefore we 
an a

ount of unknown and in-
onsistent senten
es. Last but not least, we 
an investigate a variety oftransformations between belief sets: transformations violating existing a
-
essibility relations, transformations satisfying some integrity 
onstraints,transformations 
ontrolled by some rules or default rules.Let us start with a sket
h of one of the possible re�nements of oursemanti
s.First, we introdu
e 3-interpretations of belief sets and (an example of)a

essibility relation.De�nition 11 Let be I3 : K �! Int3 su
h that 8K1; K2(K1 6= K2 )I3(K1) 6= I3(K2)). W3I = fw 2 Int3 : 9K 2 K(I3(K) = w)gDe�nition 12 (A

essibility relation) Let be R = f(w1; w2) 2 W3I �W3I : true(w1) = true(w2) ^ false(w1) � false(w2)gNote: We stress that the symbol� denotes the stri
t in
lusion, i.e.M 6�M . The a

essibility relation R from the de�nition 12 may not be iden-ti�ed with a (T; F )-a

essibility, but it is de�nable in terms of (T; F )-a

essibilities. LetR(T;F ) be the (T; F )-a

essibility relation, i.e. w1R(T;F )w2i� w2 is (T; F )-a

essible from w1. Then R = SF�S R(;;F ), i.e. w1Rw2i� 9F � S(w2 is (;; F )-a

essible from w1).Example 3 (Closed World Assumption) Let us �x a set T. Let beWT = fw 2 Int3 : true(w) = Tg. For ea
h T there is a unique elementwTmax 2 Int3 su
h that for ea
h w 2 WT holds false(w) � false(wTmax):
learly, wTmax = (T; F ), where F = S n T .The set fWT : T � Sg is a partition of W3I, for ea
h w 2 W3I there isexa
tly one WT su
h that w 2WT .Now, we 
an de�ne: CWA3(w) = wTmax, if true(w) = T .



We turn to the non-monotony of CWA. Let us 
onsider A 2 P andK 2 K su
h that true(I(K)) = T , but true(I(A(K))) 6= T . Therefore,CWA3(I(K)) = wTmax, butCWA3(I(A(K))) 6= wTmax. Revisions result in retra
ting some CWA-inferen
es.We have de�ned CWA3 fun
tion on interpretations. Now we do itfor propositions. We 
an use the 
orresponden
e between propositions andinterpretations (or between (T; F )-a

essibility and A-a

essibility). Let(TA; FA) be assigned to A, where TA = I(A(K?)) and FA = SnI(A(K>)).CWA3(A) is the proposition determined by the assigned interpretation(TCWA3(A); FCWA3(A)), where TCWA3(A) = TA and FCWA3(A) = S n TA.From the de�nition follows: if for A;B holds Aj� B, then CWA3(A)j�CWA3(B) does not hold. Proof: TB � TA, but S n TB 6� S n TA and weapply the proposition 6.So, we have an example of a Kripke stru
ture, where besides the a
-
essibility relations R(T;F ) (or, equivalently, RA) 
orresponding to thepropositions (or to the 3-interpretations) we have yet another a

essibilityrelation R. The relation is de�nable in terms of (T; F )-a

essibility rela-tions and, 
onsequently, holds: if w1Rw2, then R(T;F )(w1) R R(T;F )(w2).The following example shows that there are some a

essibility rela-tions � su
h that for some transformation G holds: w1 � w2 but notG(w1) � G(w2) and vi
e versa.Example 4 Let us have a theory T = fp qg and worlds (2-interpretations);ea
h world w = (T; F ) we represent by true(w) = T :w1 = fp; q; rg w4 = fp; rgw2 = fp; qg w5 = fq; rgw3 = fpg w6 = fqgw7 = frg w8 = ;T is satis�ed in M = fw1; w2; w5; w6; w7; w8g and is not satis�ed inN = fw3; w4g.(a) Let all worlds from M are mutually a

essible (and they are theonly a

essible worlds). We de�ne � as M � M . The (;; fqg)-transformation (let us denote it G) violates the a

essibility relation:G(w1) = w4 and G(w2) = w3, therefore { if holds w � w1, thenG(w) � G(w1) does not hold.(b) Similarly, if � = (M � M) [ (N � N). Then :(w1 � w3) butG(w1) � G(w3).We �nd useful and 
on
eptually 
lear to separate stati
 and dynami
parts in our semanti
s. The following de�nitions do the separation.De�nition 13 Kripke stru
ture is a pair (W;R), where W is a set ofinterpretations, R is a set of a

essibility relations (R = f� : � �W�Wg).77Usually only one a

essibility relation is 
onsidered and instead of the set of interpreta-tions is into the de�nition introdu
ed a set of possible worlds together with an interpretationassigned to ea
h world.



De�nition 14 A monoid is a triple (M; Æ; e), where� M is a set,� Æ : M �M �! M is an operation, whi
h is asso
iative, i.e. forevery x; y; z 2M holds x Æ (y Æ z) = (x Æ y) Æ z� e 2M and for every x 2M holds e Æ x = x Æ e.Now we give a de�nition of DKS. The stru
ture 
onsists of a monoid-part and a Kripke-stru
ture-part. The main idea is a transformationof possible worlds on itself. The transformation is spe
i�ed by monoidelements.De�nition 15 Dynami
 Kripke Stru
ture is a pair (M;W), whereM isa monoid and W is a Kripke stru
ture, and for every x 2 M there is afun
tion fx : W �!W su
h that� fe is an identity mapping� for every x; y 2M , for every w 2W holds fx(fy(w)) = fxÆy(w)Remark 1 It would be wel
omed if the monoid 
on
ept in the De�nition15 
ould be repla
ed by the group 
on
ept (be
ause of ni
e algebrai
 prop-erties, based on the existen
e of inverse elements) and a group a
tion onthe set W would be 
onsidered. 8Unfortunately, the group 
on
ept is not in general appli
able to ourproblem. We use notation from the Example 1: let us assume that A =(ins(fx; yg); del(;)), B = (ins(fxg); del(;)), C = (ins(;); del(fxg)). Ifwe put B ÆA = A and B�1 = C (both represent a natural 
hoi
e), we getB�1 Æ B Æ A 6= A.There are more deep grounds for 
onsidering monoids instead of groupswhen de�ning DKS. The kernel of the problem is in the idempoten
y. Anidempotent group operation is a 
ontradi
tory notion (with the ex
eptionof the group 
ontaining only one element feg): for every a holds a = e (itis a simple 
onsequen
e of a Æ a = a = e Æ a).Nevertheless, the DKS is a more general 
on
ept (than the DBM) and ifwe �nd a reasonable motivation, we 
an reje
t the idempoten
y 
ondition.9Example 5 (CWA in terms of DKS) : Let (W3I ; fRg) be a Kripkestru
ture, where R is de�ned by the de�nition 12. Let (�; Æ; e) be amonoid, where � is a set of fun
tions from W3I to W3I .We de�ne fCWA(w) = wTmax for T = true(w).Let g : W �! W be a fun
tion su
h that true(g(w)) 6= T andtrue(g(w)) [ false(g(w)) 6= S. There is a fun
tion f su
h that for everyw is f Æ fCWA(w) = fCWA(w) 10 but f Æ (g Æ fCWA)(w0) 6= g Æ fCWA(w0)8When dis
ussed an abstra
t notion of dynami
 information stru
ture a perspe
tive fromGroup Theory was proposed by Van Bentham, see [8℄.9A group is used in an ongoing resear
h of DKS-based semanti
s for a logi
 of a
tion and
hange.10This 
ondition is satis�ed by all fun
tions in the 
lass ff : W �! W j if w = (T; F ) andf(w) = (T 0 ; F 0), then T � T 0 and F � F 0g. Intuitively, fun
tions from this 
lass move only\unde�ned" values.



for w0 su
h that true(w0) = T . If we express this result in terms of DBM,we have the non-monotoni
ity property.The following interpretation of the CWA-example serves as a hint forexpressing known types of non-monotoni
 reasoning in terms of DKS. Thefun
tion fCWA is a hypotheses generator. 11. The fun
tion g represents atransition to the falsifying 
onditions for this hypothesis (it means: whatis true in fCWA(w) may be false in fCWA(g(w))). We propose to usethese pairs of fun
tions (or pairs of 
lasses of fun
tions) { hypothesesgenerators and revisers (falsi�ers) { in appli
ations of DKS to 
ontext-dependent reasoning.7 CONCLUSIONSIn this paper we have used a dynami
 point of view to give an abstra
t
hara
terization of 
ontext-dependent, hypotheti
al and non-monotoni
reasoning. We have proposed a set of postulates for revisions of beliefstates and we have shown that the asso
iated inferen
e is non-monotoni
.The semanti
s for the postulates we have generalized to the 
on
ept ofDynami
 Kripke Stru
tures, 
onsisting of two parts { a dynami
 parta
ting on the se
ond, passive part.We believe that DKS provide a general, uniform and unifying view onvarious known types of 
ontext-dependent, hypotheti
al and non-monotoni
reasoning. When 
ompared to DBM , the 
on
epts of interpretation andKripke stru
ture make a link to traditional formalizations more easy. Anadditional level of analysis { a language and its interpretation { seems tobe an advantage.We note again that the dynami
s introdu
ed into Kripke stru
tures isa substantial one. The expressive power of Dynami
 Kripke Stru
tures isstri
tly greater than the expressive power of Kripke Stru
tures: We 
anexpress 
hanges in a

essibility. If f is a fun
tion assigned to a monoidmember and R is an a

essibility relation, then it may hold f(w1) R f(w2)along with :w1 R w2. Therefore, two possible worlds be
ome a

essible,if a dynami
s is introdu
ed. Similarly, (w1 R w2) ^ :(f(w1) R f(w2))may hold.A 
lose 
orresponden
e between belief revision and non-monotoni
 rea-soning is thoroughly studied and well established, see [3℄. If we 
ompareour postulates with the AGM -style postulates, the main di�eren
e is inour attempt to express by one set of postulates both insertions and dele-tions.Our future resear
h should be devoted to a generalization of the presentset of postulates in order to 
at
h su
h issues as integrity 
onstraints, 
on-sisten
y maintaining, revisions (and hypotheses generation) 
ontrolled bysome rules or default rules. The underlying latti
e-stru
ture of the setof belief sets will be relaxed and des
riptive possibilities of more gen-11A hypothesis 
hara
teristi
 for CWA we 
an formulate as \what is not expli
itly true is
onsidered as false".



eral stru
tures will be studied. An important part of the future resear
hshould be devoted to the appli
ations of DKS-semanti
s to a 
hara
ter-ization of default reasoning, 
ounterfa
tuals, reasoning about a
tion and
hange, abdu
tion, 
ontext-dependent reasoning, minimal entailment. Inthe Example 5 was presented an idea of fun
tions expressing an hypothe-sis 
hara
teristi
 for a type of non-monotoni
 reasoning and of fun
tionsrepresenting transitions to the falsifying 
onditions for the hypothesis. Agoal of the future work is to explore this idea.A
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