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Abstract

The paper is devoted to dynamic and context-dependent aspects of
knowledge and reasoning. The main attention is focused on a relationship
between belief revision and inference.

Dynamic Kripke Structures (DKS) are introduced in the paper. Intu-
itively, DK S consists of a dynamic part and a static part (a usual Kripke
Structure). The elements of the dynamic part map a set of possible worlds
on itself. A unified view on context-dependent and non-monotonic rea-
soning — based on Dynamic Kripke Structures — is discussed.

In order to motivate DK S we introduce a set of postulates (a Dynamic
Belief Model, DBM) in a style similar to Gardenfors’ approach — propo-
sitions are treated as modifications of belief sets. Non-commutativity of
conjunction and non-monotonicity of inference are the main results con-
cerning DBM. A semantics of DBM is studied and generalized to DK S.

1 INTRODUCTION

Understanding dynamic and context-dependent aspects of knowledge and
reasoning is of crucial importance for artificial intelligence research.

A substantial feature of intelligence is an ability to change beliefs,
and to reason correctly with the changed beliefs (in various contexts).



Belief revision and non-monotony of reasoning are examples of some fun-
damental problems connected with the dynamics and context-sensitivity
of reasoning.

The main idea of the paper is a concept of Dynamic Kripke Structure.
We hope that the concept is an useful tool for a (unifying) semantic char-
acterization of dynamic and context-dependent aspects of knowledge and
(non-monotonic, hypothetical) reasoning.

A Dynamic Kripke Structure (DK S) consists of two components — a
static one (a Kripke Structure) and a dynamic one (a set of transforma-
tions). Intuitively, DKS enables to specify a change (or a stability) of
belief when transitions from one context to another are caused by some
events. The contexts are represented by Kripke structures, the events by
the transformations.

A Kripke Structure consists of two components. The first is a set of
states of the world (some alternative intuitions: possible worlds, contexts,
sets of belief sets). The second are some accessibility relations between
possible worlds. The accessiblity provides, in a sense, a relaxation of the
intuitive idea of the state of the world: the state may be described in
an incomplete way and the accessible worlds (epistemic alternatives) are
consistent with the description.

Transformations between possible worlds we can imagine as changes
in believed hypotheses or as transitions from one (set of) context(s) to
another (set of) context(s). The accessibility relation between possible
worlds may be changed by the transformation significantly.

Before we introduce the concept of DKS in a rigorous way we will
investigate a sequence of constructions. The main reason is to motivate
well DK S.

First, in Sections 2 — 4 we try to use and explore an idea of Gardenfors,
see [2]. Propositions are considered as functions from belief states to belief
states. An application of a proposition to a belief state is conceived in [2]
as an addition of new evidence into the resulting belief state. Conjunction
of propositions is defined as composition of functions and it is obvious that
the conjunction (as composition of insertions) is commutative.

We extend this view: if a proposition maps an original belief state
into a resulting belief state, we assume that the resulting belief state may
contain some new information and that some information from the original
belief state may be deleted.

We investigate the consequences of this decision: conjunction of propo-
sitions is non-commutative and a consequence relation (defined in the
same way as in the [2]) is non-monotonic. Let us note that this non-
monotony is an obvious consequence of some basic properties ' of belief
revisions and context-dependent reasoning. A set of postulates is proposed
in order to formalize the idea.

In Section 5 we provide a semantics appropriate for our postulates. We
assign interpretations to belief sets and some mappings (from interpreta-

1« . non-monotonic behaviour ...is a symptom, rather than the essence of non-standard

inference”, see [8].



tions to interpretations) to propositions. We prove that our postulates
are satisfied in the semantics. Furthermore, we prove a representation
theorem: we can assign (in a unique way) to each proposition a mapping
from interpretations to interpretations.

The result is interesting in its own right. But our goal is to moti-
vate the introduction of more general Dynamic Kripke Structures. In
the rest of the paper we generalize the semantic constructions in order
to introduce DKS. A non-monotonic consequence relation was intro-
duced in a simple model of belief revision (in the DBM). Our goal
is to generalize the semantics of DBM and to create a semantic basis
(the DKS) for more general treatment of non-monotonic (hypothetical,
context-dependent, non-standard) inference.

2 POSTULATES

We will distinguish two kinds of entities, propositions and belief states.
Let P be a set of propositions and K be a set of belief states. A, B,C, D, I
will be used as variables over P, K (with subscripts or superscripts) will
be used as variables over K.

Propositions are mappings from belief states to belief states. If we
apply a proposition (function) A to a belief state K, then A(K) represents
the resulting belief state.

Now, some postulates are presented. ? First, we accept a part of
Gérdenfors’ postulates (from [2]).

(P1) For every A and K there is K' such that A(K) = K’

(P2) There is a proposition I such that for each K holds I(K) = K

(P3) For every A, B exists a proposition A A B such that for every K
holds A A B(K) = A(B(K))

(P4) For every A and K holds AN A(K) = A(K)
Some definitions, before we supplement the set of postulates.

Definition 1 A partial order is a reflezive, antisymmetric and transitive
relation.

Let L be a set and < be a partial order on L. (L, <) is a lattice, if for
each a,b € L there is a least upper bound, denoted by aUb, and a greatest
lower bound, aMb. °

2Intuitions and motivations are discussed in the Section 3. The both sections could be
read in parallel.
3A relation p C S x S (p is said to be a relation on S) is

o reflexive if for each a € S holds (a,a) € p
o antisymmetric, if for a,b such that (a,b) € p and (b,a) € p holds a = b
e transitive, if holds (a,c) € p, whenever (a,b) € p and (b,c) € p.

An element z € L is called upper (lower) bound of a,b, if a < z and b < z (z < a and z < b).
If y is an upper (lower) bound of a,b and for each upper (lower) bound z of a,b holds that
y <z (z < y) then y is called the least upper (greatest lower) bound of a, b.



If for a € L and for each x € L holds a < x (x < a), then a is the
least (greatest) element of L.

Definition 2 (Conflicting functions) Let L be a lattice with the least
element 1 and the greatest element T. Let A # I # B be functions from
L to L, where I is the identity function.

We say that A, B are conflicting, if the conditions as follows are sat-

isfied:

(1) A(LUB(T)=T=A(T)UB(L)

(2) A(L)NB(T)=1L=A(T)NB(1)
Now, the rest of our postulates:

(PO) K is a lattice with the least (K1) and the greatest (KT) element.
(P5) For every A there is B such that A, B are conflicting propositions.
(P6) For every A and every K holds A(K) = (K U A(K.))N A(KT)

Proposition 1 For every A and K, KI, if K < K' then A(K) < A(Kl)
Proof: Straightforward. * O

Proposition 2 If A, B are conflicting, then VK—-(A(KL) < B(K) <
A(KT)).

Proof: Let us assume A(K ) < B(K) < A(K~) for some K. Hence
A(K,)UB(K+) < B(K)UB(KT) < A(K1)UB(K7). From the definition
of conflicting functions and from the proposition 1 follows B(K+) = K.

Similarly, A(KJ_) M B(KJ_) < B(K) M B(KJ_) < A(KT) M B(KJ_)
Therefore, B(K,) = K| .

For each K: B(K) = (K UB(K,.))NB(KT) = (KUK,)N Kt =
K. Therefore, B = I (in contradiction with the definition of conflicting
functions). O

Definition 3 (Consequence relation) Let be K € K and A,B € P.
Then Al~ B iff VK(B A A(K) = A(K)). We say that B is a consequence
of A.

We note that in this paper only a poor language is considered ®

We will assume that propositions and belief states are sets P and K
satisfying the conditions PO — P6. Each set of propositions and belief
states satisfying PO — P6 is called Dynamic Belief Model (DBM).

4Complete proofs are in the full version of the paper.
5Similarly, Makinson in [5] makes no reference to the particular choice of connectives.



3 INTUITIONS

In this section we give some additional explanations, motivations, and
intuitions.

Example 1 We consider a propositional database (a store of proposi-
tional symbols) together with the basic update operations - insert and
delete.

Let a countable set of symbols S be given (an alphabet of the proposi-
tional logic).

Let K, the set of all belief states, be the set of all subsets of S (a belief
state is an instance of the propositional database). A partial order on K
is the subset relation. The greatest lower (least upper) bound of two sets
is their intersection (union).

The set of all propositions P is defined as the set of all pairs (ins(®), del(T))
5 where ® and ¥ are subsets of S and ®N¥ = .

Let be I = (ins(0), del(0)), K, =0, K+ =S.

Application of a proposition A = (ins(®),del(P)) to a belief state K
is represented as the belief state (K U ®) \ 0.

For A = (ins(®),del(¥)) and B = (ins(@l),del(\lll)) we define BA A
as (ins((@UG )\ ¥),del((TUT )\ ).

There is no problem to show that the postulates PO — P6 are satisfied
in this example.

We restrict our attention to the postulate P5. (As a consequence, it
will be shown that our conjunction is non-commutative.)

Let A, B be propositions. Let us assume that A = (ins({d, e}),del({a})), B =
(ins({a})),
del({d,e})). Clearly, A,B are conflicting: A(K,) U B(K+) = A(0) U
B(S) = {d,e} U (S\ {d,e}) =S = B(®) U A(S). Similarly, A(K.) N
B(K+1)=0= B(®) N A(S). It is straightforward to show that for each A
there is a B such that A, B are conflicting.

In the next section we will show that a conjunction of two conflicting
propositions is non-commutative, see Proposition 3. In our example, e €
AN B(K) for each K and e ¢ BN A(K) for each K.

Now some additional comments and explanations to postulates PO —
P6 follow.

(P0O) We assume that there is a hierarchy of belief states:

e a belief state can be extended to a more rich belief state (or
restricted to a more poor belief state)

e a useful abstraction is an initial, or empty, belief state; similarly,
a final belief state joining all belief states

e the condition that for two given belief states there is the greatest
lower (least upper) bound is a more restrictive one (it assumes
a kind of completeness of the set of belief sets); in the conclu-
sions of this paper we discuss the need of a more general set of
postulates

6ins is intended to represent the insert operation, del delete.



(P1) Propositions are mappings from belief states to belief states (a
proposition stated in a belief state results in a new belief state).
Nevertheless, propositions and members of belief states are not nec-
essary identical entities.

(P2) There is a proposition which causes no change of each belief state.
It is called the identity proposition.

(P3) There is a proposition defined by two successive applications of
two propositions. The corresponding operation on propositions is
denoted by A (and called conjunction). The set of all propositions
is closed under conjunction.

(P4) The repeated application of the same proposition gives nothing new.

(P5) For each revision (insert or delete) there is a complementary revision
(in a sense). If A, B are conflicting, then insertion represented by one
of them and removal represented by the other are complementary.

(P6) For each proposition A and each belief state K the value of A(K)
can be computed from the “representative” applications of A (i.e
from A(KT) and A(K 1)) and from K.

4 BASIC PROPERTIES

Proposition 3 (Non-commutativity of conjunction) IfA, B are con-
flicting, then
VK(AA B(K) # B A A(K))

Proof: Let us assume that A A B(Koy) = B A A(Kjp) for some K. From
the proposition 1 follows A(K ) < AANB(Ko) < A(KT). Hence, A(K) <
B A A(Ko) < A(K7). Contradiction with the proposition 2. O

Proposition 4 If A, B are conflicting propositions and C|~ A, then
VK(C A B(K) # BAC(K)).

Proof: Let be C A B(Ko) = B A C(Kg). Hence, A A B(C(Ko)) =
ANC(B(Kp)) =CAB(Ko) = BAC(Ko) = BAA(C(Ky)). Contradiction
— A, B are not commutative according to the proposition 3. O

The main theorem of this section expresses the non-monotony of the
|~-relation.

Theorem 1 (Non-monotony of consequence relation) If A|~ D,
D # 1, and B, D are conflicting, then =(B A A|~ D)

Proof: From the Proposition 3 follows that for each K holds BAD(K) #
D A B(K). Therefore, for some Ko, D A B(A(Ko)) # B A D(A(Ky)) =
B(A(K,)) O

Example 2 A, B are defined as in the Ezample 1, C = (ins({d, e, g}), del({a}),
hence C|~ A. It is straightforward to show that B A C|~ A does not
hold: Let K be {a,b,c}, then BAC(K) ={a,b,c,g} but A(BAC(K)) =

{b: c,d,e, g}



Now we will discuss the properties
(G2u) A|~ z whenever Al~y, AU {y}|~ =z
(G3'u) AU {y}|~ x whenever A|~y, Al~ z

stated and studied in [5], see also [1]. G2u, and G3'u are intended to be (a
part of the) conditions which should satisfy any reasonable formalization
of a non-monotonic consequence relation.

We present analogies of G2u and G3 u.

Theorem 2 If A|l~ B and B A A|~ C, then A|~ C.
Theorem 3 If A|l~ B and A|~ C, then BA A|~ C.

5 SEMANTICS

We assign interpretations to the belief sets and accessibility relations be-
tween the interpretations to the propositions.

Definition 4 (Interpretations) LetS be a set of propositional symbols.
An interpretation is a pair (T, F), where T,F C 8. An interpretation is
called 3-interpretation whenever it satisfies the condition TNF = (. A
3-interpretation such that T U F = § is called 2-interpretation.

Notation: We denote the set of all interpretations as Int, the set of all
2-interpretations as Ints, the set of all 3-interpretations as Ints. We intro-
duce projections of interpretations true and false: true((T, F)) = T and
false((T,F)) = F. For 2-interpretations it holds that false((T,F)) =
S\ true((T, F)). Therefore, each (T, F) € Int; may be represented as T
and we may consider the operations on sets (N, U) as defined on Int,.

Now we define a mapping from belief sets to 2-interpretations.

Definition 5 (Assignment of interpretations to belief sets) LetZ :
K — Int2 be a mapping that for each K1, K> satisfies the conditions:

o Ki # K> = I(K:1) # Z(K>)

o I(Ki U K>) = I(K1) UZ(K>)

o I(K1 N K3) = (K1) N I(K>)

e Z(K1) = (0,S) and Z(KT) = (S,0)

Note: 7 is definable on K and S, if card(K) < card(2°), where card(X)
denotes the cardinality of the set X.

Definition 6 (Possible worlds) Wz = {(T,F) € Int, : 3K(Z(K) =
(T, F))} is called T-image of K.
Note: Elements of Wz may be called possible worlds. Wz is a lattice

with the least and the greatest element. Z is an isomorphism of K and
Wr.



Definition 7 (Accessibility relations) (a) Let be (T, F) € Ints and
(Th, F1), (T>, F>) € Inty. We say that (Th, Fy) is (T, F')-accessible
from (T2, F>) iff
(al) T1 = (TQ UT) \F
(a2) F, = (FQUF)\T

(b) Letbe A€ P,K € K,Z(K) = (T», F»). (Th, F) is called A-accessible
from (To, F») off Z(A(K)) = (T, F1).

Note: We use 3-interpretations as a tool for a representation of changes.
Intuitively, members of T change to true, members of F' change to false
and things change only when they are forced to (there is no change spec-
ified for symbols not in T or F).

Observation 1 If (T», F>) € Inty, (T,F) € Ints and Th = (T UT) \
F,Fy = (F,UF)\T, then TN Fy =0 and Ty UF, = S. (The definition
7 is correct.)

Observation 2 For each (T, F1), (T2, F2) € Inty there is a (T, F) €
Ints such that (T1, F1) is (T, F)-accessible from (Ta, F»).

Proposition 5 Let (Th, F1), (Ts, F») be given and T = T'\T>, F = T>\T1 .
If (TI,FI) satisfies both conditions (al), (a2), then T C T FCF.

Proof: Let z € T,ie. x € Ty ANx € T>. From x € T} follows z ¢ F.
Therefore, z € T

Similarly, for x € F holds x € To Az ¢ Ti. If x ¢ F,, then z € Ty
(because of z € T>) — contradiction. O

Note: T =T\ T> and F = T» \ T1 are called the minimal solutions of
the conditions (al), (a2) from the definition 7.

Theorem 4 (A representation theorem) For each K, K' and each A
there is exactly one minimal (T, F) € Ints such that
I(K) is (T, F)-accessible from I(KI) iff K = A(K,).

Proof: Existence:

=

We assume that K = A(K, ). Hence, Z(K) is A-accessible from I(KI ).
From the postulate P6 and the definition of interpretation follows Z(K) =
T(A(K)) = Z((K UA(K 1)NA(KT)) = (Z(K ) UZ(A(K 1)) NI(A(KT).
Let us denote Z(A(K 1)) as (T,8\T) and Z(A(KT)) as (S\ F, F). There-
fore, true(Z(K)) = (true(I(Kl)) UT)\ F. Similarly for false(I(Kl)), ie.
I(K) is (T, F)-accessible from I(K,)

Minimality follows from the Proposition 5: true(Z(A(K 1)) = true(I(A(Kl))\

true(Z(K') and false(Z(A(KT)) = true(Z(K') \ true(Z(A(K)).

=

If A(K') # K, then T(K) # (Z(K' ) UTZ(A(K,))) NZ(A(K~)). There-
fore, true(Z(K)) # (true(Z(K ))UT)\F or false(Z(K)) # ( false(Z(K'))U
F)\T. Hence Z(K) is not (T, F)-accessible from Z(K ). O



Note: The representation theorem shows that each proposition A of a
DBM can be represented by a pair (T, F') € Ints and this representation
is unique if we consider minimal interpretations only.

Definition 8 If A € P and (T, F) € Ints satisfy the representation the-
orem, then we say that (T, F) is assigned to A.

Note: (T, F) is determined uniquely by the Minimality condition (ac-
cording to the representation theorem).

Consequence 1 Let (Ta, Fa) be assigned to A. If K1 is A-accessible
from K, then Z(K:1) = (Ta,8 \ Ta). If K> is A-accessible from K,
then Z(K2) = (S \ Fa, Fa).

Let us investigate the relation between DBM and 3-interpretations
closer.

Definition 9 Acc = {((w,w1),w2) : w1, w2 € Wz, w € Ints is minimal
interpretation such that ws is w-accessible from wq}

Lemma 1 Each ¢ € Acc is a function (of the type Ints x Wz — Wz ):
for each w1 € Wz and w € Ints there is exactly one wa € Wz such that
wa 18 w-accessible from wi .

Theorem 5 If K = Wz and P = Acc, then postulates PO — P6 of DBM
are satisfied.

Definition 10 Let be (T,F),(T ,F') € Ints. (T,F) is stronger than
(T',F')ifT' CT,F CF.

Observation 3 TNF =0, FNT = 0.

Proposition 6 If A,B € P and (Ta,Fa),(Ts,FB) € Ints are assigned
to A, B, respectively, then A|~ B iff (Ta,Fa) is stronger than (Ts, Fg).

6 SEMANTICS - REFINEMENTS

We have closed the first part of the paper. In order to progress, let us
discuss the basic intuitions, summarize the results and the current state
of our exposition and outline a perspective.

Our main ambition is to provide a semantics suitable for formalizations
of dynamic aspects of knowledge and reasoning. The static picture of
knowledge and reasoning was in the preceding sections identified with
belief sets. A complete list of atoms (qualified as true or false) was assigned
to a belief set and it determines in a unique way the set of true formulae
(for the given belief set).

A dynamics is introduced if we consider changes of belief sets (rep-
resented here by some transformations, mappings). Intuitively, the dy-
namics corresponds to a generation of new sentences (hypotheses) or to a
retraction of some hypotheses. Of course, the new knowledge has usually
a preliminary status, it is open to some future revisions.



The model of DBM is very simple and a rudimentary one. We have
a uniform and rich structured universe of belief sets, to each of them is
assigned a complete 2-interpretation and transformations between belief
sets correspond to simple insertions and removals (we are not worried
about the permissibility of these operations in a given state).

The semantics from the Section 5 is very similar to the formal se-
mantics of Dynamic Logic Programming, see [6]. The dynamic meaning
function of [6] assigns to each dynamic predicate symbol a function from
ground terms to the binary relations on a set of states (or, equivantely, a
function that assigns a binary relation on a set of states to each ground
proposition). A-accessiblity of the Section 5 assigns to propositions func-
tions from belief states to belief states.

Our semantics can be characterized by the pair Wz, {Ra : A € P}),
where {Ra : A € P} is the set of accessibility relations determined by
A € P. Therefore, we have a kind of Kripke structure as an appropriate
semantics for the DBM.

Now, our aim is to outline how to complicate (generalize, refine) this
picture. We can accept more weak or more complicated structure of the
universe of belief sets. Interpretations of belief sets can be more general
— three or four valued — therefore we can account of unknown and in-
consistent sentences. Last but not least, we can investigate a variety of
transformations between belief sets: transformations violating existing ac-
cessibility relations, transformations satisfying some integrity constraints,
transformations controlled by some rules or default rules.

Let us start with a sketch of one of the possible refinements of our
semantics.

First, we introduce 3-interpretations of belief sets and (an example of)
accessibility relation.

Definition 11 Let be Zs : K — Ints such that VK, K2(K; # Ko =
T3(K1) # I3(K2)). Wi = {w € Ints : IK € K(Z3(K) = w)}

Definition 12 (Accessibility relation) Let be R = {(w1,ws2) € Wi x
W2 s true(wi) = true(ws) A false(wi) C false(ws)}

Note: We stress that the symbol C denotes the strict inclusion, i.e.M ¢
M. The accessibility relation R from the definition 12 may not be iden-
tified with a (T, F')-accessibility, but it is definable in terms of (T, F)-
accessibilities. Let Rr, )y be the (T, F')-accessibility relation, i.e. wi R rywa
iff wy is (T, F)-accessible from wi. Then R = Uch R py, i.e. wiRws
iff 3F C S(w2 is (0, F)-accessible from wy). -

Example 3 (Closed World Assumption) Let us fiz a set T. Let be
Wr = {w € Int3 : true(w) = T}. For each T there is a unique element
whae € Ints such that for each w € Wr holds false(w) C false(wl,y):
clearly, wl,, = (T, F), where F = S\ T.

The set {Wr : T C S} is a partition of W3, for each w € W3 there is
ezactly one Wr such that w € Wr.

Now, we can define: CW Az(w) = wha,, if true(w) =T.



We turn to the non-monotony of CWA. Let us consider A € P and
K € K such that true(Z(K)) = T, but true(Z(A(K))) # T. Therefore,
CW A3(Z(K)) = wl .., but
CW A3(T(A(K))) # wl,.. Revisions result in retracting some CW A-
inferences.

We have defined CW As function on interpretations. Now we do it
for propositions. We can use the correspondence between propositions and
interpretations (or between (T, F)-accessibility and A-accessibility). Let
(T4, Fa) be assigned to A, where Ta = T(A(K 1)) and Fa = S\Z(A(KT)).
CW A3(A) is the proposition determined by the assigned interpretation
(Tew a5(A), Fow ag(ay), where Tow aga)y = Ta and Fowagay = S\ Ta.
From the definition follows: if for A, B holds Al~ B, then CW A3(A)|~
CW A3(B) does not hold. Proof: Tg C Ta, but S\ Ts € S\ Ta and we
apply the proposition 6.

So, we have an example of a Kripke structure, where besides the ac-
cessibility relations R(r gy (or, equivalently, Ra) corresponding to the
propositions (or to the 3-interpretations) we have yet another accessibility
relation R. The relation is definable in terms of (T, F')-accessibility rela-
tions and, consequently, holds: if wi Rwz, then Ry py(wi) R R ry(w2).

The following example shows that there are some accessibility rela-
tions p such that for some transformation G holds: wi p w2 but not
G(w1) p G(w2) and vice versa.

Example 4 Let us have a theory T = {p < q} and worlds (2-interpretations);
each world w = (T, F) we represent by true(w) = T':

w1 ={p,q,r} ws={p,r}

we ={p,q}  ws={qr}

ws = {p} we = {q}
wr = {r} wg =10
T is satisfied in M = {w1, w2, ws, ws, wr, ws} and is not satisfied in
N = {w3, w4}.

(a) Let all worlds from M are mutually accessible (and they are the
only accessible worlds). We define p as M x M. The (0,{q})-
transformation (let us denote it G) violates the accessibility relation:
G(wi) = wa and G(w2) = ws, therefore — if holds w p w1, then
G(w) p G(w1) does not hold.

(b) Similarly, if p = (M x M) U (N x N). Then =(w1 p ws) but
G(w1) p G(ws).

We find useful and conceptually clear to separate static and dynamic
parts in our semantics. The following definitions do the separation.

Definition 13 Kripke structure is a pair (W, R), where W is a set of
interpretations, R is a set of accessibility relations (R ={p: p C WxW}).
7

"Usually only one accessibility relation is considered and instead of the set of interpreta-
tions is into the definition introduced a set of possible worlds together with an interpretation
assigned to each world.



Definition 14 A monoid is a triple (M, o,e), where
o M is a set,

e o: MxM — M is an operation, which is associative, i.e. for
every x,y,z € M holds x o (yoz)=(zoy)oz

e ¢ € M and for every x € M holdseoxz =z oe.

Now we give a definition of DKS. The structure consists of a monoid-
part and a Kripke-structure-part. The main idea is a transformation
of possible worlds on itself. The transformation is specified by monoid
elements.

Definition 15 Dynamic Kripke Structure is a pair (M, W), where M is
a monoid and W is a Kripke structure, and for every x € M there is a
function fy : W — W such that

o f. is an identity mapping
o for every x,y € M, for every w € W holds fo(fy(w)) = froy(w)

Remark 1 [t would be welcomed if the monoid concept in the Definition
15 could be replaced by the group concept (because of nice algebraic prop-
erties, based on the existence of inverse elements) and a group action on
the set W would be considered. ®

Unfortunately, the group concept is not in general applicable to our
problem. We use notation from the Ezample 1: let us assume that A =
(ins({z,y}),del(0)), B = (ins({z}),del(D)), C = (ins(D),del({x})). If
we put Bo A=A and B~ = C (both represent a natural choice), we get
B 'oBo A#A.

There are more deep grounds for considering monoids instead of groups
when defining DKS. The kernel of the problem is in the idempotency. An
idempotent group operation is a contradictory notion (with the exception
of the group containing only one element {e}): for every a holds a =e (it
is a simple consequence ofaca =a =eoa).

Nevertheless, the DKS is a more general concept (than the DBM) and if

we find a reasonable motivation, we can reject the idempotency condition.
9

Example 5 (CW A in terms of DKS) : Let (W3,{R}) be a Kripke
structure, where R is defined by the definition 12. Let (P,0,e) be a
monoid, where ® is a set of functions from Wi to W3.

We define fowa(w) = wh .. for T = true(w).

Let g : W — W be a function such that true(g(w)) # T and
true(g(w)) U false(g(w)) # S. There is a function f such that for every
w is f o fowa(w) = fowa(w) ' but fo(go fowa)(wo) # go fewa(wo)

8When discussed an abstract notion of dynamic information structure a perspective from
Group Theory was proposed by Van Bentham, see [8].

9A group is used in an ongoing research of DK S-based semantics for a logic of action and
change.

10This condition is satisfied by all functions in the class {f : W — W] if w = (T, F) and
f(w) = (T',F'), then T C T and F C F'}. Intuitively, functions from this class move only
“undefined” values.



for wo such that true(wo) = T'. If we express this result in terms of DBM,
we have the non-monotonicity property.

The following interpretation of the CWA-ezample serves as a hint for
expressing known types of non-monotonic reasoning in terms of DKS. The
function fowa is a hypotheses generator. ''. The function g represents a
transition to the falsifying conditions for this hypothesis (it means: what
is true in fowa(w) may be false in fewa(g(w))). We propose to use
these pairs of functions (or pairs of classes of functions) — hypotheses
generators and revisers (falsifiers) — in applications of DKS to contert-

dependent reasoning.

7 CONCLUSIONS

In this paper we have used a dynamic point of view to give an abstract
characterization of context-dependent, hypothetical and non-monotonic
reasoning. We have proposed a set of postulates for revisions of belief
states and we have shown that the associated inference is non-monotonic.
The semantics for the postulates we have generalized to the concept of
Dynamic Kripke Structures, consisting of two parts — a dynamic part
acting on the second, passive part.

We believe that DKS provide a general, uniform and unifying view on
various known types of context-dependent, hypothetical and non-monotonic
reasoning. When compared to DBM, the concepts of interpretation and
Kripke structure make a link to traditional formalizations more easy. An
additional level of analysis — a language and its interpretation — seems to
be an advantage.

We note again that the dynamics introduced into Kripke structures is
a substantial one. The expressive power of Dynamic Kripke Structures is
strictly greater than the expressive power of Kripke Structures: We can
express changes in accessibility. If f is a function assigned to a monoid
member and R is an accessibility relation, then it may hold f(w1) R f(w2)
along with —w; R wa. Therefore, two possible worlds become accessible,
if a dynamics is introduced. Similarly, (w1 R w2) A =(f(w1) R f(w2))
may hold.

A close correspondence between belief revision and non-monotonic rea-
soning is thoroughly studied and well established, see [3]. If we compare
our postulates with the AGM-style postulates, the main difference is in
our attempt to express by one set of postulates both insertions and dele-
tions.

Our future research should be devoted to a generalization of the present
set of postulates in order to catch such issues as integrity constraints, con-
sistency maintaining, revisions (and hypotheses generation) controlled by
some rules or default rules. The underlying lattice-structure of the set
of belief sets will be relaxed and descriptive possibilities of more gen-

11 A hypothesis characteristic for CWA we can formulate as “what is not explicitly true is
considered as false”.



eral structures will be studied. An important part of the future research
should be devoted to the applications of DK S-semantics to a character-
ization of default reasoning, counterfactuals, reasoning about action and
change, abduction, context-dependent reasoning, minimal entailment. In
the Example 5 was presented an idea of functions expressing an hypothe-
sis characteristic for a type of non-monotonic reasoning and of functions
representing transitions to the falsifying conditions for the hypothesis. A
goal of the future work is to explore this idea.
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