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Abstract. We are aiming at a semantics of logic programs with pref-
erences defined on rules, which always selects a preferred answer set, if
there is a non-empty set of (standard) answer sets of the given program.

It is shown in a seminal paper by Brewka and Eiter that the goal
mentioned above is incompatible with their second principle and it is
not satisfied in their semantics of prioritized logic programs. Similarly,
also according to other established semantics, based on a prescriptive
approach, there are programs with standard answer sets, but without
preferred answer sets.

According to the standard prescriptive approach no rule can be fired
before a more preferred rule, unless the more preferred rule is blocked.
This is a rather imperative approach, in its spirit. According to our back-
ground intuition, rules can be blocked by more preferred rules, but the
rules which are not blocked are handled in a more declarative style, in-
dependent on the given preference relation on the rules.

An argumentation framework (different from Dung’s framework) is
proposed in this paper. Some argumentation structures are assigned to
the rules of a given program. Other argumentation structures are de-
rived using a set of derivation rules. Some of the derived argumentation
structures correspond to answer sets. An attack relation on derivations
of argumentation structures is defined. Preferred answer sets correspond
to complete argumentation structures, which are not blocked by other
complete argumentation structures.

Keywords: Extended logic program - Answer set - Preference - Pre-
ferred answer set - Argumentation structure

1 Introduction

The meaning of a nonmonotonic theory is often characterized by a set of (alter-
native) belief sets. It is appropriate to select sometimes some of the belief sets
as more preferred.

We are focused in this paper on extended logic programs with a preference
relation on rules, see, e.g., [1,2,10,18]. Such programs are denoted by the term
prioritized logic programs in this paper.

It is suitable to require that some preferred answer sets can be selected from
a non-empty set of the standard answer sets of a (prioritized) logic program.
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Unfortunately, there are prioritized logic programs with standard answer
sets, but without preferred answer sets according to the semantics of [1] and
also of [2] or [18]. This feature is a consequence of the prescriptive approach to
preference handling [4]. According to that approach no rule can be fired before
a more preferred rule, unless the more preferred rule is blocked. This is a rather
imperative approach, in its spirit.

An investigation of basic principles which should be satisfied by any system
containing a preference relation on defeasible rules is of fundamental importance.
This type of research has been initialized in the seminal paper [1]. Two basic
principles are accepted in the paper.

The second of the principles is violated, if a function is assumed which always
selects a non-empty subset of preferred answer sets from a non-empty set of all
standard answer sets of a prioritized logic program.

We believe that the possibility to select always a preferred answer set from
a non-empty set of standard answer sets is of critical importance. This goal
requires to accept a descriptive approach to preference handling. The approach
is characterized in [3,4] as follows: The order in which rules are applied, reflects
their “desirability” — it is desirable to apply the most preferred rules.

Our basic intuition is that rules can be blocked by more preferred rules, but
the rules which are not blocked are handled in a more declarative style. If we
express this in terms of desirability, it is desirable to apply all (applicable) rules
which are not blocked by a more preferred rule. The execution of non-blocked
rules does not depend on their order. Dependencies of more preferred rules on less
preferred rules do not prevent the execution of non-blocked rules. However, this
approach is computationally more demanding than the prescriptive approach.

A formal elaboration of this intuition resulted in our approach into attack
and blocking relations between sets of generating rules (expressed in terms of
derivations of complete argumentation structures).

Our goal is:

— to modify the principles proposed by Brewka and Eiter in [1] in such a way
that they do not contradict a selection of a non-empty set of preferred answer
sets from the underlying non-empty set of standard answer sets, and

— to introduce a notion of preferred answer sets that satisfies the above men-
tioned modification.

The proposed method is inspired by [8]. While there defeasible rules are
treated as (defeasible) arguments, here (defeasible) assumptions, sets of default
negations, are considered as arguments. Reasoning about preferences in a logic
program is here understood as a kind of argumentation. Sets of default literals
can be viewed as defeasible arguments, which may be contradicted by conse-
quences of some applicable rules. The preference relation on rules is used in
order to ignore the attacks of less preferred arguments against more preferred
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arguments. The core problem is to transfer the preference relation defined on
rules to a blocking relation between answer sets.

The basic argumentation structures correspond to the rules of a given pro-
gram. Derivation rules, which enable derivation of argumentation structures from
the basic ones are defined. That derivation leads from the basic argumentation
structures to argumentation structures corresponding to answer sets of the given
program (we use a method of [5]). The argumentation structures, which corre-
spond to answer sets, are called complete in this paper.

Derivations of complete argumentation structures play a crucial role in our
approach. Attacks of more preferred rules against the less preferred rules are
transferred to attacks between derivations of complete argumentation structures.
Preferred answer sets are defined over that background. They correspond to
complete and non-blocked (warranted) argumentation structures.

The contributions of this paper are summarized as follows. A modified set of
principles for preferred answer set specification is proposed. A new type of argu-
mentation framework is constructed, which enables a selection of preferred an-
swer sets. There are basic arguments (argumentation structures) and attacks in
the framework. Rules for derivation of argumentation structures are introduced.
After that attacks between derivations of complete argumentation structures, ac-
ceptable derivations and, finally, warranted and blocked complete argumentation
structures are defined. Preferred answer sets are defined in terms of complete
and non-blocked (warranted) argumentation structures. Each program with a
non-empty set of answer sets has a preferred answer set in our approach.

A preliminary version of the presented research has been published in [12].
This is more than an extended version of [13]. The main differences between the
versions are summarized in the Conclusions.

2 Preliminaries

The language of extended logic programs is used in this paper.

Let At be a set of atoms. The set of objective literals is defined as Obj =
At U {—~ A: A€ At}. If L is an objective literal then an expression of the form
not L is called default literal. Notation: Def = {not L | L € Obj}. The set of
literals Lit is defined as Obj U Def.

A convention: =—A = A, where A € At. If X is a set of objective literals,
then not X ={not L | L € X}.

A rule is each expression of the form L < Lq,..., Ly, where k > 0, L € Obj
and L; € Lit. If r is a rule of the form as above, then L is denoted by head(r) and
{L1,...,Li} by body(r). If R is a set of rules, then head(R) = {head(r) | r € R}
and body(R) = {body(r) | » € R}. A finite set of rules is called extended logic
program (program hereafter).

! Our intuitions connected to the notion of argumentation structure and also the used
constructions are different from Dung’s arguments or from arguments of [8]. This
paper does not present a contribution to argumentation theory.
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The set of conflicting literals is defined as CON = {(L1,L2) | L =
not Ly V Ly = =La}. A set of literals S is consistent if (S x S) N CON = 0.
An interpretation is a consistent set of literals. A total interpretation is an inter-
pretation I such that for each objective literal L either L € I or not L € I. A
literal L is satisfied in an interpretation I iff L € I (notation: I = L). A set of
literals S is satisfied in I iff S C I (notation: I = 5). A rule r is satisfied in I
iff I = head(r) whenever I |= body(r), notation I = r. An interpretation I is a
model of a program P, notation I |= P, if for each r € P holds I = 7.

If S is a set of literals, then we denote SN Obj by ST and SN Def by S™.
Symbols (body(r))~ and (body(r))™ are used here in that sense (notice that the
usual meaning of body~ (r) is different). If X C Def then pos(X) = {L € Obj |
not L € X}. Hence, not pos((body(r))~) = (body(r))~. If r is a rule, then the
rule head(r) < (body(r))™ is denoted by r+.

An answer set of a program can be defined as follows (only consistent answer
sets are defined).

A total interpretation S is an answer set of a program P iff ST is the least
model? of the program P+ = {r* | S k= (body(r))~}. Note that an answer set
S is usually represented by St (this convention is sometimes used also in this
paper).

The set of all answer sets of a program P is denoted by AS(P). A program
is called coherent iff it has an answer set.

A strict partial order is a binary relation, which is irreflexive, transitive and,
consequently, asymmetric.

A prioritized logic program is defined in this paper as a pair (P, <), where
P is a program and < a strict partial order on rules of P. Let be ry,79 € P. If
71 < ro it is said that ro is more preferred than ry.

3 Argumentation Structures

Our aim is to transfer a preference relation defined on rules to a preference rela-
tion on answer sets and, finally, to a notion of preferred answer sets. To that end
argumentation structures are introduced. The basic argumentation structures
correspond to rules. Some more general types of argumentation structures are
derived from the basic argumentation structures. A special type of argumenta-
tion structures corresponds to answer sets.

Definition 1 (<p, [11]). An objective literal L depends on a set of default
literals W C Def with respect to a program P (L <p W) iff there is a sequence
of rules (ri,...,rg), k > 1, r; € P such that

— head(ry) = L,

- W = body(r1),

- for each i, 1 <i <k, WU {head(r1),...,head(r;)} |E body(rit1).

The set {L € Lit | L <p W}UW is denoted by Cne,(W).?

2 P* is treated as definite logic program, i.e., each objective literal of the form —A,
where A € At, is considered as a new atom.
3 Cne, (W) could be defined as Tg(W) and L <p W as L € Tg(W).
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W C Def is self-consistent w.r.t. a program P iff Cn (W) is consistent. O

If Z C Obj, we will sometimes use the notation Cn ., (W), assuming that
the program P is extended by the set of facts Z.

Definition 2 (Dependency structure). Let P be a program.
A self-consistent set X C Def is called an argument w.r.t. P for a consistent
set of objective literals Y, given a set of objective literals Z iff

1. pos(X)NZ =10,
2. Y C Cne,., (X).

We will use the notation (Y «— X;Z) and the triple denoted by it is called a
dependency structure (w.r.t. P).* [J

If Z = () also a shortened notation (Y < X) can be used. We will sometimes
omit the phrase “w.r.t. P” and speak simply about dependency structures and
arguments, if the corresponding program is clear from the context.

We are going to define basic argumentation structures, while using the same
notation as for dependency structures. It is justified by Proposition 1., saying
that basic argumentation structures comply with Definition 2 of dependency
structures, if some conditions are satisfied.

Definition 3 (Basic argumentation structure). Let r € P be a rule such
that

— (body(r))~ is self-consistent and
~ pos((body(r))) N (body(r))* = 0.

Then A = ({head(r)} < (body(r))~; (body(r))™) is called a basic argumentation
structure. UJ

Proposition 1. Fach basic argumentation structure is a dependency structure.

Proof. Let A = ({head(r)} < (body(r))~; (body(r))*) be a basic argumentation
structure for a rule r € P. We show that{head(r)} C One i+ ((body(r)) ™).

Assume the program P U (body(r))™. Let (body(r))™ = {Li1,...,Lx}. We
introduce a new rule rp, = L; « for every L; € (body(r))*. Then we create a
sequence of rules (ry,ra,...,r,) such that

= n = [(body(r))"| + 1,

— T =T,

~ r; =1, where L; € (body(r))t, for 1 <i<mn,
—r;#r;for 1 <i4,j <mnandi#j.

4 This notation does not refer to P explicitly, but the condition ¥ C Cnpuy (X)
relates a dependency structure to P. Moreover, we will use only a kind of dependency
structures, called argumentation structures, derived from a given program P.
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This sequence satisfies conditions from Definition 1 for assumption (body(r))~,
hence head(r) € ONe p iy ((body(r))~). That is, we have that A is a de-
pendency structure. [

We emphasize that only self-consistent arguments for consistent sets of ob-
jective literals are considered in this paper. Hence, programs as P = {p < not p}
or Q = {p < not ¢; —p < not q} are irrelevant for our constructions.

Some dependency structures can be derived from the basic argumentation
structures. Only the dependency structures derived from the basic argumenta-
tion structures using derivation rules from Definition 4 are of interest in the
rest of this paper. We will use the term argumentation structure for dependency
structures derived from basic argumentation structures using derivation rules.

Derivation rules are motivated later in Example 1.

Definition 4 (Derivation rules and argumentation structures). Let P be
a program. An argumentation structure is inductively defined as follows. Fach
basic argumentation structure is an argumentation structure.

Other argumentation structures are obtained using derivation rules R1, R2,
and R3:

R1 (Unfolding) Let ri,7o € P, A1 = ({head(r)} < X1;Z1) and
Az = ({head(r2)} <= (body(rs))~; (body(re))t) be argumentation structures,
head(rs) € Z1, X1U(body(re))~ UZ1U(body(r2)) T U{head(r1)} be consistent
and X1 U (body(rg))~ be self-consistent. Then also As = (head(r;) «— X3 U
(body(r2))™; (Z1 \ {head(r2)}) U (body(rs)) ™) is an argumentation structure.
We also write Az = u(Ay, As).

R2 Let Ay = (Y1 « Xi) and Ay = (Yo «— X3) be argumentation structures
and X1 U Xo be self-consistent. Then A3 = (Y1 UYs « X3 U Xs) is an
argumentation structure. We also write A3 = Ay U As.

R3 Let Ay = (Y7 < X3) be an argumentation structure and W C Def. If
X1 UW s self-consistent, then As = (Y1 < X1 UW) is an argumentation
structure. We also write Ay = A, UW.O

Ezample 1 ([1]). Let the following program P be given as follows (P is used as
a running example in this paper):

r1 b« a,not —b
T —b <« not b
T3 a < not —a.

Suppose that <= {(ra,71)}.

Consider the rule ro. The default negation not b plays the role of a defeasible
argument. If the argument can be consistently evaluated as true with respect to
a program containing ry, then also —b can (and must) be evaluated as true.

As regards the rule r1, default negation not —b can be treated as an argument
for b, if a is true, it is an example of a “conditional argument”.
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The following basic argumentation structures correspond to the rules of P:
({b} «— {not —b};{a}),({-b} «— {not b}), {a} < {not —a}). Let us denote
them by A1, Az, A3, respectively.

An example of a derived argumentation structure: Az enables to “unfold”
the condition a in A, the resulting argumentation structure can be expressed
as Ay = u(Aq, Az) = ({b} < {not —b, not —a}).

Similarly, As = A3 U A4 = ({a,b} < {not =b, not —a}) can be derived from
Az and A4 using the rule R2.

Observe that some argumentation structures correspond to the answer sets.
As corresponds to the answer set {a,b} and Ag = ({a, b} — {not b, not -a})
to {a,b}. Notice that Ag = A3 U A3. The attack relation enables to select the
preferred answer set. This will be discussed later. [

Proposition 2. Fach argumentation structure is a dependency structure.

Proof. We have to show that an application of R1, R2 and R3 preserves the
properties of dependency structures.

R1 Since S; = X7 U (body(rz))~ U Z1 U (body(rz))t U {head(r1)} is consistent
then Sy = X1 U (body(re))™ U (Z1 \ {head(r2)}) U (body(r2))*T C Sy is also
consistent. This means that pos(X; U (body(rz))~) N ((Z1 \ {head(r2)}) U
(body(r2))™) = 0.

Let @ = PU (Z1 \ {head(r2)}) U (body(re))™ and w = head(rs) «.

From head(rs) € Cn<<PU(body(T2))+((body(rg))’) we have a sequence Ry of
rules, where Ry = (q1,G2,..-,Gm), m >0 and g, = ra.

From head(r1) € Cn,,,,, (X1) we have the sequence R1 = (p1,p2, - - -, Pn)
where n > 0 and p,, = r;. We assume there is at most one occurrence of w
in R;. Otherwise we can remove all but the leftmost one. Note that since
r9 € P there is a possibility to satisfy body(r1) in a different way from using
w.

If w € R; then we have p; = w for some 1 < ¢ < n. We construct the
sequence R3 = (q1,q2,- -+, qm,P1,D2, - - -, Di—1,Pit1,- - Pn)- If w & Ry we
construct the sequence Rs = (g1, G2, - - -, Gm,D1,D2, - - -, Pn). In both cases R3
satisfy the conditions from Definition 1 for the assumption X3 U(body(r2)) ™.

R2 The condition pos(X) N Z = 0 is satisfied both for R2 and R3, because

Z =10.
It is supposed that Y; «— X; and Y; < X, are argumentation struc-
tures and X; U X5 is self-consistent. We have to show that Y; U Yy C
Cnp(X1UX5). Let L € Y1UY5. Then L € Cnp(X;) or L € Cnp(Xs), hence
Le Cnp(X1 U XQ)

R3 Now, we assume that Y < X is an argumentation structure, i.e., ¥ C
Cnp(X) and X UW is self-consistent. Clearly, Cnp(X) C Cnp(X UW),
hence Y C Cnp(X UW).

Definition 5 (Derivations). A derivation of an argumentation structure A
(w.r.t. P) is a minimal sequence (A1, As, ..., Ai) of argumentation structures
(w.r.t. P) such that A is a basic argumentation structure, A = Ay, and each
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A;, 1 < i <k, is either a basic argumentation structure or it is obtained by R1
or R2 or R3 from preceding argumentation structures.

An extraordinary attention is devoted to derivations of complete argumen-
tation structures — they correspond to answer sets.

Definition 6 (Complete argumentation structures). An argumentation
structure (Y <« X) is called complete iff for each literal L € Obj it holds that
LeY ornotLeX. U

A set of basic argumentation structures is assigned to an arbitrary program
P.

Proposition 3. A complete argumentation structure (Y «— X) is derived from
a set of basic argumentation structures assigned to a program P iff X UY is an
answer set of P.

A proof is based on the method of [5] and on a correspondence between deriva-
tions of argumentation structures and Cn«, (X).

We are interested in attacks against derivations of complete argumentation
structures.

4 Attacks and Warranted Derivations

Our approach to preferred answer sets is based on a solution of conflicts between
complete argumentation structures. We distinguish three steps towards that goal.

Contradictions between argumentation structures represent the elementary
step.

Rule preference and contradictions between basic argumentation structures
are used to form an attack relation on basic argumentation structures. Con-
sider two basic argumentation structures A; and As. If A; contradicts A5 and
corresponds to a more preferred rule, then it attacks As.

Attacks between derived argumentation structures depend on how argumen-
tation structures are derived, see Example 3 below. Hence, we will introduce an
attack relation on derivations. The notion of warranted and blocked complete
argumentation structures and of preferred answer set is based on this basis.

Definition 7. Consider the argumentation structures A = (Y1 « X1;Z1) and
B = (Yy « Xy; Z3).

If there is a literal L € Y7 such that not L € X, it is said that the argument
X, contradicts the argument Xo and the argumentation structure A contradicts
the argumentation structure B.

It is said that X is a counterargument to Xo. [

The basic argumentation structures corresponding to the facts of the given
program are not contradicted.

Let 1 = a < be a fact and not a € (body(rz))~. Then any W C Def s.t.
(body(re))~ C W is not self-consistent and, therefore, it is not an argument.
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Ezxample 2. In Example 1, A; contradicts Ay and A5 contradicts Aj.

Only some counterarguments are interesting: the rule r; is more preferred
than the rule ry, therefore the counterargument of A, against A; should not
be “effectual”. We are going to introduce a notion of attack in order to denote
“effectual” counterarguments. [J

Similarly as for the case of argumentation structures, the basic attacks are
defined first. A terminological convention: if A; attacks As, it is said that the
pair (A1, As) is an attack.

Definition 8. Let r1, o be rules, and A; = ({head(r1)} — (body(rs));
(body(ri))*) and Ay = ({head(rs)} <« (body(r2))~;(body(re))t) be basic
argumentation structures such that ro < r1 and Ay contradicts As.

Then Ap attacks Ay and it is said that this attack is basic. O

Next step could be to transfer basic attacks to attacks between derived ar-
gumentation structures. However, it is not a straightforward task. Example 3
shows our intuitions. An argumentation structure B attacks another argumen-
tation structure A w.r.t. a derivation, but not w.r.t. another derivation.

Ezample 3. Let P be

1 a<—notb rs3 a < not c
ro b—nota 14 c+«b.

<= {(7“1, 7“2)}.

There are two answer sets of P: S} = {a} and Sy = {b, ¢}. The corresponding
argumentation structures are A = ({a} < {not b, not c}) and B = ({b,c} <
{not a}), respectively.

Let A; be ({a} <« {not b}), Ay = ({b} < {not a}), A3 = ({a} «— {not c}),
Ay = ({c} < 0:{b}}).

There are two derivations of A: the sequences o1 = (A1, A) and o5 = (A3, A)
(remind the minimality condition). They start from a basic argumentation struc-
ture and R3 is used.

On the other hand, there is only one® derivation of B: 7 = (A, A4, B).

The only basic attack is (A2, A1) (Az attacks A;). Hence, it is intuitive to
accept that 7 attacks o1. However, there is no reason to consider oy as attacked.

A rather credulous approach is accepted in this paper: if there is a derivation
of a complete argumentation structure, which is not attacked, then the complete
argumentation structure is preferred. However, this is only a rough idea, a more
subtle solution is presented below. [

We are going to define attacks between derivations. It is a simple task, but
not sufficient for our goals.

5 If we abstract from the order of argumentation structures in the derivation. This
does not influence the attack relation between derivations.
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Definition 9. Let o be a derivation of an argumentation structure A and 7 a

derivation of an argumentation structure B. Suppose that a basic argumentation

structure Ay belongs to o and a basic argumentation structure By belongs to T.
It is said that o attacks 7, if (A1, B1) is a basic attack.

It is obvious that a derivation ¢ may attack a derivation 7 and 7 may attack
o, i.e. mutual attacks are possible. Similarly cyclic attacks are possible.

We intend to define preferred answer sets in terms of preferred complete argu-
mentation structures. A first approximation is to select complete argumentation
structures with non-attacked derivations. However, we need to handle the case
of mutual or cyclic attacks (i.e., to consider a kind of reinstatement). To this
end we borrow a technique from abstract argumentation frameworks [6].

Definition 10. Consider an argumentation framework (A, «), where A, the set
of arguments, is the set of all derivations of all complete argumentation struc-
tures and « is the attack relation defined in Definition 9.

A derivation o of a complete argumentation structure A is acceptable w.r.t.
a set S C Aiff for each T € A s.t. (1,0) € a there is some o’ € S s.t. (0/,7) € a.
O

Notice that acceptable derivations may be attacked by derivations of non-
complete argumentation structures.
Fact
If there is a derivation o of a complete A, which is not attacked, then o is
acceptable w.r.t. the empty set of derivations.

Ezample 4. Let P be {r1 : a < not b; ro : b «— not a}. If <= ) then both
the derivation of ({a} < {not b}) and the derivation of ({b} <« {not a}) are
acceptable w.r.t. the empty set of derivations.

Suppose that 71 < ro. Then ({b} <« {not a}) is acceptable w.r.t. the empty
set of derivations, but there is no set S of derivations s.t. ({a} < {not b}) is
acceptable w.r.t. S.

Let Rbe PU{r3:c« a; r4: d < b}, r1 < 19,74 < r3. Then each derivation
o of {{a,c} < {not b,not d}) is acceptable w.r.t. S = {0} and each derivation
7 of ({b,d} «— {not a,not c}) is acceptable w.r.t. S = {7}.

Example 5. Consider a program P:

1 ay <+ not az, not ds
T dy < not az,not ds
r3 as < not ai, not ds
T4 do «— not a1, not ds
rs as < not as, not dy

T6 ds < not ag, not dy
<= {(r1,74), (r3,75), (r6,72)}.

We have three complete argumentation structures:
A1 = {ar,d1} < {not az, not da}), Az = ({aa,ds} < {not ay, not ds}),
As = ({as,ds} < {not az, not dq}).
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We have a cycle of attacks. Each derivation of As attacks each derivation of
A1, each derivation of A3 attacks each derivation of As, each derivation of A;
attacks each derivation of As.

Let 01,092,053 be derivations of Aj, As, A3, respectively. It holds that oy is
acceptable w.r.t. {03}, og is acceptable w.r.t. {01}, and o3 is acceptable w.r.t.

{0’2}. O

Definition 11 (Warranted and blocked argumentation structures). Let
A be a complete argumentation structure. If there is an acceptable derivation of
A w.r.t. a set S of some derivations of some complete argumentation structures,
then A is called warranted, otherwise it is called blocked. [

5 Preferred Answer Sets

Definition 12 (Preferred answer set). A complete argumentation structure
1s preferred iff it is warranted.

Y UX is a preferred answer set iff (Y <« X) is a preferred argumentation
structure.

Notice that our notion of preferred answer set is rather a credulous one.

Ezample 6. Consider our running Example 1, where we have complete argumen-
tation structures As = ({b,a} < {not —b, not —a}), Ag = ({=b,a} < {not —a,
not b}) and basic argumentation structures A; = ({b} < {not =b};{a}), As =
({=b} <= {not b}), As = ({a} — {not —a}).

The only basic attack is (A1, A2), A; attacks As. Therefore, the derivation
o= (A1, A3, Ay = ({b} < {not b, not —a}), As) attacks 7 = (As, Az, Ag).

There is no derivation of Ag which is not attacked by o and no derivation
of Ag counterattacks the derivation o. Ag is blocked, on the other hand, As is
warranted. Hence, we prefer As over Ag.

Consequently, {a,b} is a preferred answer set of the given prioritized logic
program. [J

The following example shows that the argumentation structure corresponding
to the only answer set of a program is preferred, even if each its derivation is
attacked by a derivation of an argumentation structure which is not complete.
The example demonstrates also that attacks between derivations can not be
implemented via conventional attacks on arguments. Anyway, a goal of our future
research is to find a method how to minimize comparisons of derivations.

Ezxample 7. Consider the program

71 b« not a r3 c—a
T a < notb T4 ¢« notc
<={(r2,71)}.

Let the basic argumentation structures be denoted by A;, i = 1,...,4.

(A, Ag) is the only basic attack.
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The derivation (A;) attacks the derivation o = (As, As, A5, Ag), where A5 =
({c} <= {not b}) and Ag = ({¢,a} — {not b}).

However, A; is not a member of a derivation of a complete argumentation
structure. Hence, o is acceptable w..r.t. the empty set according to Definition
10. Therefore, the complete argumentation structure Ag is warranted and, con-
sequently, it is the preferred argumentation structure. [

We distinguish between attacking and blocking. If an argumentation struc-
ture is blocked then there is no its derivation which counterattacks the attacks
of derivations of other complete argumentation structures.

Theorem 1. If S is a preferred answer set of (P, <), then S is an answer set
of P.

Proof. If S is a preferred answer set then there is a preferred complete argu-
mentation structure A = (ST <« S7). Hence, S is total. We have to show that
ST = Cne,p(S7) N Obj using a result of [5].

Clearly, ST C Cn«,(S™) according to the definition of dependency struc-
ture. Let be L € Obj and L € Cn«,(S7). It holds that S~ is self-consistent
and S is total. Hence, not L € S~ and L € ST. O

Our next goal is to evaluate the presented approach to preferred answer sets
selection. To this end some principles and their (un)satisfaction are discussed in
the next section.

6 Evaluation

We start with a discussion of principles proposed by [1]. A new principle requiring
selection of a preferred answer set from the non-empty set of standard answer
sets is added. After that it is proved that the new principle is satisfied by our
approach. Finally, an informal and tentative proposal of some new principles,
characterizing the descriptive approach to selection of preferred answer sets is
presented.

6.1 Principles

The principles (partially) specify what it means that an order on answer sets
corresponds to the given order on rules. Let us start with principles proposed in
[1] for arbitrary prioritized theories.

Principle I.

Let By and By be two belief sets of a prioritized propositional theory (T'; <)
generated by the rules RU {d;} and RU {d3}, where d;,ds € R, respectively. If
dy is preferred over ds, then Bs is not a (maximally) preferred belief set of 7. O
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Principle II.
Let B be a preferred belief set of a prioritized propositional theory (T'; <) and r
a rule such that at least one prerequisite of  is not in B. Then B is a preferred
belief set of (T'U {r}; <’) whenever <’ agrees with < on priorities among rules
inT.O

We believe that the possibility to select always a preferred answer set from
a non-empty set of standard answer sets is of critical importance. Principle III,
accepted in this paper, reproduces the idea of Proposition 6.1 from [1].

Principle III.
Let B # 0 be the set of all belief sets of a prioritized theory (T, <). Then there
is a selection function ¥ s.t. 3(B) is the set of all preferred belief sets of (T, <),
where ) # X(B) C B. O

We consider and discuss below only a specific case of prioritized theories,
prioritized logic programs. Principle I specifies an attack of a belief set By against
a belief set By. The attack is based on the preference of the rule d; over the rule
dy (they cannot be applied together for generating a preferred answer set). But
Principle I is not appropriate for an approach which considers mutual attacks of
preferred answer sets and its main goal is to select at least one preferred answer
set — existence of an attack against a candidate for a preferred answer set is
not sufficient for its elimination. The attacked answer set can be defended by a
counterattack of another answer set. In order to summarize, Principle I is not
appropriate for an approach which distinguishes between attacking and blocking.

It was shown in [1], Proposition 6.1, that Principle IT is incompatible with
the existence of a function which selects a non-empty set of preferred answer sets
from a non-empty set of standard answer sets of a given logic program, if the
notion of preferred answer set from [1] is accepted. Moreover, we have a basic
problem with this principle. First an example.

Ezample 8 ([1]). Suppose that we accept both Principle IT and Principle III.
Consider program P, whose single standard answer set is S = {b} and the
rule (1) is preferred over the rule (2).

¢+ notb (1)
b «— not a (2)

S is not a preferred answer set in the framework of [1].

Assume that S, the only standard answer set of P, is selected — according to
Principle III — as the preferred answer set of (P, <).% Let P’ be PU{a «+ ¢} and
a « ¢ be preferred over the both rules (1) and (2). P’ has two standard answer
sets, S and T = {a, c}.

Note that {c} € S*. Hence, S should be the preferred answer set of P’
according to the Principle IT . However, in the framework of [1] the only preferred
answer set of (P’,<’) is T. This selection of preferred answer set satisfies clear

5 Observe that the only derived complete argumentation structure is ({b} «
{not a,not c}). Hence, {b} is a preferred answer set in our framework.
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intuitions — T is generated by the two most preferred rules. A consequence,
accepted in ]1] is that Principle III is refused.

In our approach the complete argumentation structure ({a,c} < {not b}) is
preferred and {a,c} is the preferred answer set of P’.

Principle III is of crucial value according to our view, therefore we do not
accept Principle II. This example is not the only reason for it. A more funda-
mental reason is expressed in Sect. 6.2 as a principle called Nonmonotonicity of
selection constraints. We selected in this example preferred answer sets of P’
from a broader variety of possibilities. Consequently, a selection of a preferred
answer set from the extended set of possibilities should not be limited to a subset
of those possibilities.

A more detailed justification of our decision not to accept Principle IT is
presented in [12]. O

Principle IT is not accepted also in [9]. According to [4] descriptive approaches
do not satisfy this principle in general.

In the rest of this subsection satisfaction of the Principle III (more precisely,
its specialization for prioritized logic programs) is proved.

Lemma 1. The attack relation between derivations of complete argumentation
structures is irreflexive. [

Proof. Let 0 = (A4, ..., A) be a derivation of a complete argumentation struc-
ture Ay. Suppose to the contrary that o attacks itself, i.e., there are basic ar-
gumentation structures A;, A; s.t. A; = ({head(r)} < {body~ (r)}; {body™ (r)})
attacks A; = ({head(q)} <« {body™ (q)}; {body™(q)}), where r,q are rules. It
follows that not head(r) € body~q. Contradiction: Ay is consistent and o is a
minimal sequence with the last member A. O

Theorem 2. Principle I is satisfied.
Let P = (P, <) be a prioritized logic program and AS(P) # (. Then there is
a preferred answer set of P in our approach.

Proof. Case 1 Assume that P has only one answer set S. if there is only one
derivation of A = (ST < S7), then no complete argumentation structure blocks
it (from Lemma 1.). If there are more derivations of (ST < S7), then the argu-
ment from the proof of the lemma is applied: A is consistent and all derivations
are minimal sequences with the last member A.

Case 2 Suppose that P has only two answer sets S; and S5. Let the cor-
responding complete argumentation structures be A; = (S « S) and A =
(Sf < S5), respectively.

Without loss of generality assume that there is a derivation of A; which is
not attacked by a derivation of As. Then P has at least one preferred answer
set.

Suppose now that each derivation of A; is attacked by a derivation of A,
and vice versa. Consider a derivation o of A;. Let {r,...,7;} be the set of all
derivations of A; attacking o. Recall that each 7; is attacked by a derivation of
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Aji. Let S be the set of all derivations of A; attacking at least one 7;. It holds
that o is acceptable w.r.t. S, hence A; is warranted.

Case 3 Let be AS(P) = {S1,..., 5k}, k > 3. Assume that the corresponding
complete argumentation structures are A;,7=1,...,k.

If there is a derivation of some A;, which is not attacked, then the corre-
sponding answer set is preferred.

Otherwise, all derivations of all complete argumentation structures are
attacked by a derivation of a complete argumentation structure. By a general-
ization of the argument of Case 2 we have that each derivation of each complete
argumentation structure is defended by a set of derivations. [J

6.2 Discussion — Descriptive Approach

Finally, a discussion of a tentative proposal of some possible principles appro-
priate for a descriptive approach to preferred answer sets selection is presented.
The principles are expressed in a more or less informal way and represent a very
preliminary attempt. All the principles are inspired by our definitions and con-
structions, but they are not intended solely for the framework presented in this
paper. A general and more detailed discussion of the postulates is postponed for
a future paper.

The following principle represents a more careful, but less deep version of
Principle I:

Principle — Defeated answer sets.
Let S1,S2 be answer sets of a program P, and let S; be not defeated. If S is
defeated by Ss, then S; cannot be a preferred answer set.” [J

The principle above and the following one can be considered as expressing a
little bit more accurately the main intuitive idea of our stance w.r.t. descriptive
approach to preferred answer sets selection: it is desirable to apply all rules of
an undefeated set of generating rules. There is a difference between attacking
and blocking (defeating).

Below is the other side of this intuitive idea: rules can be blocked by more
preferred rules but other rules are handled in a declarative style.

Principle of blocking.
If a standard answer set A is generated by a set R of rules, where no rule is
attacked by a more preferred rule then A is a preferred answer set. O

Next principle is inspired by the problem of Example 8. The problem was
as follows: a program P with a set S of answer sets was given together with a
program R s.t. P C R. M # S is the set of all answer sets of R. According
to our view conditions expressed for a selection of preferred members of S may
not constrain a selection of preferred members of the different M. If we select

7 Of course, there are different possible ways how to specify the notion of defeat. A
definition of defeated generating sets of rules can be obtained in a straightforward
way from the notion of defeat presented in this paper.



210 J. Sefrének and A. Simko

a preferred answer set from M then we can not limit (constrain) the selection
to S.

Principle — Nonmonotonicity of selection constraints.
If P C R are programs, then a selection of preferred answer sets of R should not
be limited to the set of preferred answer sets of P. [J

Attacks of rules, which do not contribute to a generation of a standard answer
set, are irrelevant w.r.t. a selection of preferred answer sets:

Principle — Irrelevant attacks.

Let 1,79 € P, r1 attacks ro, but 71 is not a member of a set of generating rules
of a standard answer set and ro € R, where R is a set of rules generating a
standard answer set A.

If there is no other attack against rules of R, then A is a preferred answer
set. [

As regards a choice of principles, we accept the position of [1]: even if some-
body does not accept a set of principles for preferential reasoning, those (and
similar) principles are still of interest as they may be used for classifying different
patterns of reasoning.

Of course, some of principles proposed in this subsection may be refused, or
some new may be suggested. Different sets of such principles provide different
conceptions of a descriptive approach to preferred answer sets selection.

Finally, notice that our descriptive approach can be expressed without argu-
mentation structures using a translation to generating sets of rules.

7 Related Work

D-preference [2], W-preference [18], and B-preference [1]. D/W/B-
preferences are representatives of prescriptive approaches. They are based on
the view that preference specifies the order in which rules have to be applied. A
preferred rule is forced to be applied first. If a more preferred rule has in its body
a literal, which is the head of a less preferred rule, then the more preferred rule
is not applicable. As a consequence, there are programs with standard answer
sets, but without preferred answer sets (hence, Principle III is not satisfied in
those approaches).

Our approach enables to select at least one preferred answer set from the
non-empty set of standard answer sets of a program. Not all preferences are
effective, i.e. not all preferences are transformed to attacks between derivations
of argumentation structures.

Therefore D/W /B-preferences are not in direct hierarchic (subset) relation
to our semantics.

A fundamental difference between our approach and D/W/B-preference is
that testing D/W/B-preference is local. When testing whether an answer set
X is preferred, it is not needed to know other answer sets. The computational
complexity of those approaches remains within NP. On the other hand, in our
approach, all the attacks between derivations of all complete argumentation
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structures (they correspond to answer sets) are considered. Hence, our conjec-
ture is that the decision problem, whether a complete argumentation structure
(an answer set) is a preferred one, is in our approach beyond the class NP.

Sakama and Inoue [9]. Sakama and Inoue have defined an approach that
selects preferred answer sets given the preference on literals. A preference relation
on literals is transferred to a preference relation on sets of literals. Preferred
answer sets are then the maximal (with respect to a preference relation) answer
sets. They also provide a way to transform preference on rules to preference on
literals. However, structure of the rules, i.e. which rule is blocked by which rule,
is not considered during the transformation.

Wakaki [17]. Wakaki has extended Dung’s abstract argumentation framework
in order to work with preferences. She has introduced preference relation on argu-
ments. Selection of a preferred extension (in a sense of preference on arguments)
is done in a similar manner that Sakama and Inoue use to select preferred answer
sets. Wakaki then defines a non-abstract logic programming based argumentation
framework. Rules of a logic program are transformed to arguments. Preference
on literals is transferred to preference on arguments via heads of rules. Wakaki’s
and our argumentation framework are principally different. Wakaki’s goal is to
extend Dung’s abstract argumentation framework. When selecting a preferred
extension in an abstract framework, there is no information about the structure
of arguments. On the other hand, approaches for preference handling that work
with preference on rules depend on the structure of the rules. The non-abstract
argumentation framework proposed by Wakaki deals with preference on literals,
which we do not address by our framework. Just to note, Wakaki’s non-abstract
framework is equivalent with Sakama and Inoue’s approach to preference on
literals.

Gabaldon [7]. Gabaldon works with extended logic programs and preference
(called priority) on rules. His goal it to develop a semantics that always selects
(i) a preferred answer set when a standard one exists, and (ii) the only preferred
answer set for fully prioritized programs when a standard one exists. The se-
mantics is defined in three steps. First, a partially prioritized program is fully
prioritized. Second, a program is transformed to a prerequisite-free program us-
ing the unfolding operator. Third, a test is defined to test whether an answer
set is preferred. The rules of a program are applied one at the time. A rule is
applicable if all its prerequisites were already derived. The order, in which rules
are applied, does not have to correspond to priorities. Priorities are used when
there are rules with satisfied prerequisites that block each other via default as-
sumptions. Then the preferred rule is used. An answer set is preferred if it can
be generated in the aforementioned way.

The main difference between Gabaldon’s and our approach is that Gabaldon’s
semantics does not satisfy Principle III. It guarantees existence of a preferred
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answer set when a standard one exists only for a subclass of programs (head-
cycle-free and head-consistent). We guarantee it for every logic program. The
considered subclass comprises the programs without integrity constraints that
are encoded as rules that form a negative odd cycle. Gabaldon motivates this
focus by complexity concerns. If integrity constraints are allowed we need to
know whether there are other preferred answer sets when testing whether an
answer set is a preferred one. An answer set that should be preferred from the
view of preference can be ruled out by an integrity constraint. A deeper analysis
of the relation between our and Gabaldon’s semantics is a subject of our future
mutual cooperation.

8 Conclusions

An argumentation framework has been constructed, which enables transferring
attacks of rules to attacks between derivations of argumentation structures and,
consequently, to warranted complete argumentation structures. Preferred answer
sets correspond to warranted complete argumentation structures. This construc-
tion enables a selection of a preferred answer set whenever there is a non-empty
set of standard answer sets of a program. This feature is paid by an increasing
computational complexity. The representative approaches based on the prescrip-
tive approach remain in the class NP, but our approach is beyond that class.

We did not accept the second principle from [1] and we needed to modify
their first principle.

Among goals for our future research are a development of the set of principles,
characterizing a descriptive approach and a continuation of our approach without
the transfer to argumentation structures. A consideration of attacks between
generating sets of rules represents a natural solution. Preliminary results of this
research are published in [14,15] and also in [16]. A more detailed comparison of
our approach(es) to other approaches is needed. Also approaches not referenced
in this paper are of interest.

Finally, we have to mention the main differences between the preliminary
version [12], the version presented at WLP 2011 [13], and this paper.

Both in [12,13] were used attack derivation rules. They were proposed in
order to derive attacks between argumentation structures from the basic at-
tacks. However, we did not find a proper version of the rules. The rules of [12]
were too liberal, they did not derive all intuitive attacks and, consequently, the
set of preferred answer sets was too broad. Moreover, a dependency of attacks
against argumentation structures on derivations of argumentation structures was
not explicitly stated. As regards attack derivation in [13], a more subtle set of
derivation rules is introduced, a superset of attacks was derivable and attacks
of argumentation structures were explicitly relativized to derivations of argu-
mentation structures. However, derivation rules Q2 and Q3 were sensitive to
arbitrary attacks and, as a consequence, they did not ignore irrelevant attacks
(in the sense of a Principle in Sect. 6.2).
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A claim that Principle I holds, was in both papers, the proof in [13] was not
correct. Principle I does not hold in the current paper and we consider this as
an important feature of our descriptive approach.

Attack derivation rules are omitted in this paper. Attacks between derivations
of argumentation structures were defined directly. An important new notion is
an acceptable derivation. The notion enables a correct handling of mutual and
cyclic attacks and a clear characterization of a difference between attacking and
blocking. Omitting of attack derivation rules simplifies our approach, enables a
more clear, more transparent exposition of our semantics and a more reliable
characterizations of its properties.
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