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Abstract. Przymusinski's Autoepistemic Logic of Knowledge and Belief
(AELKB) is a unifying framework for various non-monotonic formalisms.
In this paper we present a semantic characterization of AELKB in terms
of Dynamic Kripke Structures (DKS). A DKS is composed of two com-
ponents — a static one (a Kripke structure) and a dynamic one (a set of
transformations). Transformations between possible worlds correspond
to hypotheses generation and to revisions. Therefore they enable to de-
fine a semantics of insertions to and revisions of AELKB-theories. A
computation of the transformations (between possible worlds) is based
on (an enhanced) model-checking. The transformations may be used as
a method of computing static autoepistemic expansions.
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1 Introduction

The paper is aiming to present Dynamic Kripke Structures (DKS, [10]) as a
rather general tool of a semantic characterization of non-monotonic reason-
ing. The basic idea is as follows: Consider a non-monotonic inference operator
Cnypmr and two sets of sentences A, B, such that A C B and Cnpmr(4) €
Cnpmr(B). It means that there are sentences ¢, such that ¢ € B\ A and
Y € Cnpmr(A) \ Cipymr(B) (¢ represents an insertion into A, ¢ represents a
revision of Cnpmy(A)).

The situation described above can be specified semantically by a pair (F, K).
K is a Kripke structure, a relation =y, is defined over K and =y, is a semantic
specification of C'ngpm. F is a set of transformations on possible worlds of K:
F =A{f: W — W}. Consider w € W, f(w) € W such that w FEpmr ¢,
but f(w) Epmr ¢. It means that f corresponds to an insertion. Similarly, let
us assume that w Epmy ¥ and f(w) Epme ©. Therefore, f corresponds to a
revision.

Let us summarize the basic intuition: a DKS consists of two components —
a static one (a Kripke structure) and a dynamic one (a set of transformations
between possible worlds). The situations when a new knowledge is acquired and



— as a consequence — a piece of knowledge (accepted before) should be revised are
crucial from the non-monotonic reasoning point of view. DKS provide a semantic
characterization of these situations. A transformation of one possible world to
another represents a change in our knowledge. The transformation is defined on
a set of possible worlds and the set of possible worlds produced by the trans-
formation represents the sets of epistemic alternatives after the transformation
(after some insertions and some revisions forced by the insertions).

A technical core of the paper is a semantic characterization of Przymusinski’s
Autoepistemic Logic of Knowledge and Belief [9] (AELKB) in terms of DKS.
Moreover, DKS provides also a semantics of revisions (of knowledge and belief
theories). A framework for belief revision of knowledge and belief theories was
presented in [1].

Przymusinski augmented Moore’s autoepistemic logic (employing the knowl-
edge operator K) with an additional belief operator B.! Przymusinski’s exten-
sion of AELK to AELKB reflects an intuition that besides reasoning about state-
ments which are known to be true we also need to reason about those statements
that are only believed to be true. The semantics of B operator is determined
by minimal entailment (or more general by a non-monotonic entailment). Ex-
pressibility is a strong point of AELKB: AELKB is a unifying framework for
several major nonmonotonic formalisms [9]. Therefore, a semantics of AELKB
in terms of DKS supports the ambition to use DKS as a tool of a general se-
mantic characterization of non-monotonic reasoning (with an incorporated belief
revision).

The paper is organized as follows: First we describe the language and the
basic concepts of AELKB (Sections 2 and 3). Thereafter in Section 4 we define
DKS. In Section 5 are reviewed known results of [8] and [2] concerning charac-
terizations of AELK and AELB in terms of Kripke structures. The results of
this paper are presented in Section 6 (a possible-world semantics of AELKB),
in Section 7 (insertions into knowledge and belief theories are characterized in
terms of DKS and it is outlined how to compute static autoepistemic expansions
and how to use model-checking as a method of computing transformations be-
tween possible worlds), and in Section 8 (a semantic specification of revisions
of AELKB-theories and their computation by enhanced model checking is pre-
sented; the computation uses an idea of [3]).

2 Preliminaries

We assume a fixed propositional language £ with standard connectives (-, =
,A,...), a countable set of propositional letters P = {p1,...,pn,...} and a
special propositional letter L denoting false. Propositional atom, literal, and
formula are defined as usually.

! We will use abbreviations AELKB, AELK, AELB for the logics employing both
operators, only K, and only B, respectively. There is a little difference between here
introduced symbols/abbreviations and the usual usage.



Let L4, an extension of £, be defined as follows: Two (modal) operators K
and B are added to the set of symbols. Each atom, literal, and formula of L is
an (objective) atom, literal, and formula of L4, respectively. If ¢ is a formula
of L4, then B¢, K¢ are (subjective) atoms, and B¢, K¢, ~B¢ and —K ¢ are
(subjective) literals of £4. Each (subjective) literal of £4 is a formula of £4. If
¢ and v are formulae of L4, then ¢ A1, =¢ are formulae of L4 (L 4-formulae).
The formulae which contain K or B operators, are called subjective formulae.

Definition 1 (Knowledge and belief theory, [9]) A knowledge and belief
theory in L4 (AELKB-theory) is a (possibly infinite) set of formulae of the
form

BiA---ABRAB A ABHAKYL A AKthyy = a1 V---Va, VBY V-V
Bx, VK" V-V Krg,

where a;s, B;s are propositional atoms, ¢;s, V;s, X;$, T:$ are arbitrary formulae
of L4. O

Let us denote by P, the set of all atoms of L£4. An interpretation of L 4 is
a subset of Pr, .

It is clear that a valuation of an £ 4-formula in an interpretation Z may be
defined precisely as the two-valued propositional valuation:

Definition 2 Let 7 be an interpretation:

— if ¢ is an atom (objective or subjective) of L, then valz(d) =1 iff p € Z,

— if ¢ is a literal =, then valz(¢p) =1 iff v ¢ T,
— otherwise ¢ is a boolean combination of literals and valz(p) is computed

according to the rules for boolean combinations.

If X is a set of formulae, then valz(X) = 1 iff valz(¢) = 1 for each ¢ € X and
we say that T is a model of X (X is satisfied in 7). O

A convention: We will sometimes use an alternative notation for interpretations.
If 7 is an interpretation of L4, it can be denoted by Z U N, where N' = {=¢ :
¢ €Pr,\T}.

Definition 3 Let us consider interpretations T, J, which coincide on subjective
literals. T < J iff for each objective atom « holds: if o € T, then o € J.

Let X be a set of interpretations and T € Y. Then T is minimal in X iff
there is no J € X such that 7 #7 and J < T.

If a formula ¢ is true in all minimal models of a knowledge and belief theory
T then we say that ¢ is minimally entailed by T' (notation: T |=pin ¢). O

3 Static Autoepistemic Expansions

Truth values of the subjective atoms are independent on the truth values of
their arguments. Intuitively, subjective atoms are true only if their arguments
are known or believed. An evidence of what is known and/or believed we can
represent by a set of subjective atoms (belief set).?

2 Later we will use a more general notion of belief set. A decoupling of subjective and
objective literals was used in the Definition 3 of minimal interpretations.



Definition 4 Let T be an interpretation of propositional letters and S be a set
of subjective atoms. We define a function val which assigns a value from the set
{0,1} to each pair (Z,S) and each L4 formula:

— if ¢ is an objective atom, then val3(¢p) =1 iffp €T

— if ¢ is a subjective atom, then val3(¢) = 1 zﬂqS )

— if ¢ is <, then val3(p) = 1 iff val3(y) =

— if ¢ is Y AT, then val3(¢) = 1 iff val3 (¢ ) 1 and val3(t) =1

Let S be fired. We define val® (1) = 1 iff for each T is val3(t) = 1.
If X is a set of La-formulae, then val3(X) = 1 iff val3(¢) = 1 for each
¢ € X and we say that T is a model of X (X is satisfied in 7). O

We will use repeatedly the scheme from the Definition 4 in the following. The
only point of difference will be how the set S is specified.

We do not intend to use arbitrary belief sets. It is appropriate to restrict
somehow possible belief sets (a belief set should be a reasonable one). There is
a variety of possibilities for a decision, some of them are used in the paper.

Definition 5 (Formulae derivable from an AELKB-theory, [9]) LetT be
an AELKB-theory. We denote by Cna(T) the smallest set of formulae which
contains the theory T, and all instances of:
Consistency Axiom —B_1
Normality axiom B(¢ = v¢) = (B¢ = By)
and is closed under propositional consequence and under Necessitation Inference
Rule B%s |
A consequence operator is a function which assigns a set of formulae to a
set of formulae. We will use two consequence operators: Cny and Cnpj, (the
propositional consequence operator). Each set of formulae derivable from an
AELKB-theory is — in a sense — a reasonable belief set.
An “introspective content” of an AELKB-theory T can be viewed as an
AELKB-theory T™*, called static autoepistemic expansion.

Definition 6 (Static autoepistemic expansion) A theory T* is called a static
autoepistemic expansion (SAE) of a knowledge and belief theory T iff T* =
Cna(TU{K¢:T*EU{-K¢:T* £ ¢} U{Bd: T* Emin ¢}) O

Notice that we distinguish three levels of a logical characterization of AELKB-
theories:

— two-valued models (and Cnpr-consequence)
— Cng-consequence
— static autoepistemic expansion



4 Dynamic Kripke Structures

We can now proceed to the central semantic construction used in this paper.
First a rather general concept of Kripke structures is defined. (Later we will
use some of its specializations.)

Definition 7 Kripke structure is a triple (W, R, m), where W is a set of possible
worlds, R = {p : p C W x W} is a set of accessibility relations and m is a
(meaning) function assigning to each possible world an interpretation. O

Definition 8 A monoid is a triple (M, o,e), where M is a set, o : M x M — M
is an associative operation, e € M and for every x € M holds eox =z ==xo0e€.
O

We are ready to define DKS. The structure consists of a monoid-part and a
Kripke-structure-part. The main idea is a transformation of possible worlds to
possible worlds. The transformation is specified by monoid elements.

Definition 9 Dynamic Kripke Structure is a pair (M, W), where M is a monoid
and W is a Kripke structure, and for every x € M there is a function® f, :
W — W such that f. is an identity mapping and for every x,y € M, for every
w e W holds froy(w) = fo(fy(w)) D

Dynamic Kripke structures were introduced in [10] together with a demon-
stration that database updates and Closed World Assumption are expressible in
terms of DKS.

A motivation (and an ambition) behind the concept is that it seems that DKS
provide a useful tool for a (unifying) semantic characterization of non-monotonic
reasoning. The proposed approach is based on a belief that non-monotony is
a consequence of some fundamental properties? of hypothetical and context-
dependent reasoning, and of belief revision. A close relationship between belief
revision and inference is emphasized.

The most significant feature of DKS are transformations between possible
worlds. The transformations correspond intuitively to hypotheses generation and
to revisions (a hypothesis may be true in the image-world, but not in the source-
world and vice versa). Sometimes the accessibility relation is “changed” by a
transformation (more precisely — for worlds w1, ws, accessibility relation p and
transformation f may hold: (wi,wa) € p, (f(w1), f(w2)) & p or vice versa).
Therefore, if a consequence operator C'n is dependent on the accessibility rela-
tion, then a transformation results in a non-monotonic Cn. In a sense, DKS is
a construction explaining the non-monotony of reasoning. From the DKS point
of view: If non-monotony is a symptom, then hypotheses addition and revi-
sions forced by the addition are the essence (of the non-standard, hypothetical,
context-dependent reasoning).

% It is said that there is an action of M on W.
4 « . non-monotonic behaviour ... is a symptom, rather than the essence of non-
standard inference”, see [11].



5 Possible World Semantics

A characterization of AELK in terms of Kripke structures was given by Moore,
see [8]. Similarly, Kripke structures were used as a tool of a characterization of
AELB in [2]. In this section we summarize the results of [8] and [2], particularly
a characterization of SAE of AELK- and AELB-theories in terms of Kripke
structures.

Let us restrict the language £4 in such a way that we do not use belief
atoms (knowledge atoms) of the form B¢ (K¢). The language we denote by
Lax (Lag).° The formulae of both languages we will denote as Lax- (Lap-)
formulae.

Definition 10 An AELK (AELB)-theory Tax (Tag) in Lax (Lag) is a K-
(B-) restriction of an AELKB-theory T iff Tax = {¢ € T : ¢ is a L sk -formula}
(Tap={p€T:¢isaLlLap-formula }). O

5.1 Possible World Semantics for AELK

Definition 11 A complete S5-frame is a Kripke structure (W, p) such that p =
W xW.5 DO

Each possible world is accessible from each possible world in a complete S5-
frame and a complete S5-frame is uniquely determined by the set of possible
worlds W.

Definition 12 A set S of L4k -formulae is stable iff

- S:CTLPL(S)
—ifpe S, then KpeS
— ifp ¢S, then-K¢p € S

O

We now introduce a specialization of the Definition 4.

Let M be a complete S5-frame. Let w € W be an interpretation of propo-
sitional letters (as introduced in the Definition 2). We will use a function val’
as defined in the Definition 4, but S = {K¢ : (Vw € W) val,(¢) = 1} U{-K¢:
(3w € W) val,(¢) = 0}. Note that val we use as a synonym of val.

Let us recall that a formula ¢ is true in a complete S5-frame M, if for each
w € W is val? (¢) = 1; notation: val®(¢) = 1 or alternatively val™ (¢) = 1.

Theorem 1 ([8], [7]) A set of Lax-formulae S is stable iff S is the set of all
L Ak -formulae which are true in some complete S5-frame. O

51t means, Lax = {¢ € L4 : B operator does not occur in ¢}. Similarly for Lap.

6 This is our first special case of Kripke structures. For simplicity, we use the symbol p
instead of {p} and we identify the set of possible worlds with a set of interpretations
— possible worlds are interpretations. (Formally, function m is the identity, but we
are omitting an explicit recording of this function.)



We can now define an interpretation consisting of two components — one is
an ordinary propositional interpretation, the second is a complete S5-frame (a
reasonable belief set is a set of all formulae satisfied in a complete S5-frame).

Definition 13 A possible-world autoepistemic interpretation is a pair PW =
(Z, M), where T is an ordinary interpretation of propositional letters of L and
M is a complete S5-frame. O

Possible-world model is defined in an obvious way.

Definition 14 Let X be a set of formulae, ¢ a formula. X Epw ¢ iff ¢ is true
in every possible-world model of X. O

We are now able to express a characterization of SAE of AELK-theories in
terms of possible-world interpretations.

Theorem 2 ([7]) Let T be an AELK-theory. A set S of Lak-formulae is a
K -restriction of a SAE of T iff S = {¢ : (TU{K¢Y : ¢ € So} U{-K¢ : ¢ €
Lo\ So) Epw ¢}, where Sy is the set of all objective formulae from S and Ly
is the set of all objective formulae from L g . O

5.2 Possible World Semantics for AELB

B-restrictions of SAE can be also characterized in terms of Kripke structures.
The result is due to [2].

Let K be a Kripke structure (W, p), where W is a set of propositional inter-
pretations (a set of sets of objective literals). Functions val? and val® are defined
as above and for each w € Wis § = {B¢: Jw ((w,w') € p Awal,y () =1)}. O
We will write also val® and val® instead of val® and val.

Theorem 3 ([2]) Let T be an arbitrary AELB-theory and (W, p) be a Kripke
structure satisfying

— for every w € W there is w € W such that w p w
— each w € W is a model of T
— for allw,w' € W such that w p w' holds that w' is a minimal model of T

Then T* = {¢ € Lap : (Yw € W) val®(¢) = 1} is a B-restriction of a SAE of
T.O

6 AELKB-structures

We are now ready to construct an appropriate Kripke structure which enables
a characterization of SAE of (full) AELKB-theories. The possible worlds of our
Kripke structures are complete S5-frames and one of the accessibility relations
leads to minimal models.



In what follows we assume only a language £4 with a finite set of proposi-
tional letters and finite sets of finite interpretations.” There are two reasons for
the limitation to the finite structures.

First, we are interested in a correspondence between sets of models (possible
worlds) and AELKB-theories (sets of all £4-formulae true in the given possible
world). But there is a countable set M of propositional models® such that there
is no set S of L£4-formulae such that M is the set of all models of S, see [4].
Only for finite sets of propositional models holds: if w is a (finite) set of models,
then there is a set S of £ s-formulae such that w is the set of all models of S.

Second, we propose model checking as a computational method for DKS,
therefore the limitation to finite structures is a natural one.

Definition 15 (AELKB-structure) Let Int be a set of all interpretations of
an AELKB-theory in a language L 4.

AELKB-structure is a triple (W, R,m), where W = P(Int) is the set of all
subsets of Int, R = {p1,p2}, pr = {(w,w') : w # w A(3T € Int) w =w U{T}},
p2 = {(w,w') :w' = {Z : T is minimal in w}}. Finally, m is defined as follows:

— for an objective formula ¢: my, () = 1, if (VI € w) valz(p) = 1, my(¢) =0
if (VI € w) valz(¢) =0, otherwise my,(¢) = 1

- mu(K¢) =1 iff my(¢) =1

— (K 6) = 1 iff ma(@) # 1

— my(Bg) =1 iff (w,w ) € ps = m,, (¢) =1, otherwise my(B¢p) =0

— if ¢ and ¢ are La-formulae, then my(—@) = 1 — my (@) and my (o AY) =
min{ma(6), mu (1)},

If T is a knowledge and belief theory, then m(T) =1 iff (V¢ € T) my(6) = 1.
O

Note that the three-valued valuation of objective formulae was defined. We
motivate the decision as follows: Each consistent SAE of an arbitrary AELKB-
theory T' contains exactly one of the complementary literals K¢, =K ¢ for each
L 4-formula ¢. Therefore, we have to define m,, in such a way that for each
formula ¢ holds either K¢ or =K ¢. However, if neither ¢ nor —¢ is true in
each interpretation of w, then it is natural to accept both m,(-K¢) = 1 and
my(—K—¢) = 1. It means that we have to introduce the third truth-value.
Two-valued valuations are used for subjective formulae.

Notation: Let T' be an AELKB-theory and w be a set of models. We denote
by Mod(T) the set of all models of T' and by T'h(w) the set of all formulae true
in each model of w. Obviously, Th(w) = Cna(Th(w)), T = Th(Mod(T)), and
w = Mod(Th(w)).

" We consider only relevant interpretations.

8 Note that we use the concept of two-valued interpretations (models) as defined in
the Definition 2.

% m assigns an interpretation m(w) to each possible world w. An application of the
interpretation m(w) to a formula ¢ we will denote by m,, (¢).



Theorem 4 Let T be an AELKB-theory, K = (W, {p1,p2},m) be an AELKB-
structure and wr € W be the set of all models of T'. Let w, be the empty set of
interpretations.

For each possible world w € W such that w, - w C wr holds that the set
of formulae T* = {¢ : m (¢) =1} is a SAE of T.

Proof Sketch : First we prove that T* = {¢ : m (¢) = 1} C Cna(T U {K¢ :
T* = ¢} U{=K¢:T" ¢} U{Bo: T" Emin 6}).

Let be m, (¢) = 1. If ¢ is of the form K4, then m,, () = 1. It means that
each model of T* is a model of ¢). Therefore ¢ € {K7 : T* |= 7}. Similarly
for ¢ = =Kty and ¢ = B. The closure of T* under under Cn 4 is obvious.
Finally, each subset of wr satisfies T, i.e. also w’ satisfies T'. As a consequence,
T C T*. Obviously, for each objective formula ¢ such that m,/(¢) = 1 holds
that ¢ € Cna(TU{K¢ : T* = ¢} U{-K¢: T* [ ¢} U{B¢ : T* |=pin ¢}). It
means, T* is a subset of a SAE.

Conversely, let us assume ¢ € Cna(TU{K¢ : T* |= ¢} U {-K¢ : T* [~
¢YU{B ¢ : T* Epin ¢}). It is straightforward to show that m,(¢) = 1. O

Of course, if T* is a consistent SAE of T, then w, C w' C wy.

The theorem provides an existential characterization of AELKB-theories
(and their SAE) in terms of Kripke structures (AELKB-structures). But the
crucial question — which possible worlds determine SAE (which possible worlds
are sets of all models of some SAE of an AELKB-theory T') is open.

Our next goal is to present a more constructive method of SAE characteri-
zation.

Let wr be the set of all models of an AELKB-theory T'. Consider two sets
of formulae: S = {¢ : My, (¢) = 1} and Cn4(T). The next example shows that
S\ Cna(T) # 0 for some AELKB-theories.

Example 1 ([9]) Let T be {B-bA B-f = r,~KbA-Kf = d}.
Some of the members of wr are
V= {B_'b:B_'f7_'Kba_'KfaT7dab=f}
Vo = {_'B_'ba _'B_'f7 Kb, K.fa -, _'da _'ba _'f}
Hence, My, (mKb) = 1 and my, (K f) = 1, but =Kb & Cna(T) and -Kf ¢
Cna(T).
Let w'T be the set of all minimal models of T. If v € w'T, then —b € v and
—f € v. Therefore, My, (B—b) =1 = my, (B-f), but B-b,B—=f & Cnua(T). D

A non-empty S\ Cna(T) may contain literals of two forms: =K ¢ or B¢. In-
tuitively, the function m,, generates two kinds of (defeasible) hypotheses (the
sentences which do not belong among Cn 4-consequences of T'): belief formulae
and introspective formulae stating that something is not known. It remains to
show that we can provide a more constructive method of SAE characterization.

Next we define a monotonic mapping of a complete lattice.



Theorem 5 Let be W = P(Int). Then the mapping & : W — W defined as
®(w) = Mod({$ : my(p) = 1}) is monotonic.'°

Proof: If w C w', then {¢ : my,(¢) = 1} D {¢ : m(¢) = 1}, i.e. Mod({¢ :
muy(¢) = 1}) € Mod({¢ : m,, (¢) = 1}).

Remark 1 From the monotony follows that ® has a least fizpoint and a greatest
fixpoint.

We are now able to give a more deep characterization of SAE.

Theorem 6 Let T be an AELKB-theory, K = (W, {p1,p2},m) be an AELKB-
structure and wr € W be the set of all models of T

Then for each possible world w € W, where w, C w C wr holds: if ®(w) =
w, then Cna(Th(w)) is a SAE of T (we will say that w determines a SAE of
T).

There is a naive (and inefficient) method of verifying whether some possible
world w determines a SAE of T'.

Definition 16 Letwy,...,w; be a sequence of possible worlds such that for each
i=0,...,k —1 holds (w;, w; 1) € p1. We say that the sequence is a p;-path.

Obviously, for each pair (w;,w;) such that ¢ < j holds that w; C w;.

The method consists in searching all p;-paths and for each w on a p;-path
checking if {¢ : mq,(¢) = 1} is satisfied in w.

A more promising method consists in (non-deterministic) selecting some for-
mulae from the set S\ Cn 4 (T'), inserting them to T and verifying if the insertion
leads to a SAE of T

In simple cases the first attempt is a successful one:

Example 2 Let us return to the Example 1. ~Kb,—K f, B=b, B-f € S\Cna(T).
IfT =TU{-Kb,~K f, B-b, B-f} and wy is the set of all models of T", then
wyp is a fizpoint of D, hence Cna(Th(wy)) is a SAE of T.

In general, some iteration of insertions is needed. A recursive procedure we out-
line later.

We have seen that a computation of SAE consists in some insertions to T
and checking if a possible world, the set of all models of the extended theory, is
a fixed point of &.

We are now motivated to study insertions into AELKB-theories. Moreover, a
semantic characterization of insertions is interesting in its own right: insertions
exhibit the non-monotonic features of autoepistemic theories (or more generally
— of each knowledge representation framework).

!9 There is a relation between @ and the belief closure operator ¥r of [9]. A forthcoming
paper devoted to a more detailed study of computational aspects will discuss the
relation.



7 Dynamic AELKB-structures

In this Section we provide a characterization of insertions into AELKB-theories
in terms of dynamic Kripke structures.
Let us begin with a continuation of the example 1:

Example 3 Let T be again {B-bA B-f = r,~KbA-Kf = d}.

Let us insert into T a formula bV f, i.e. To = TU{bV f}. If wr is the set of
all models of T and w, is the set of all models of T', then wye does not contain
the models from wr with both —b and —f. Therefore also the set of minimal
models of T is changed and corresponding B-consequences, too.

The change may be specified by a transformation. If w is a possible world,
then Fyy s (w) is a possible world w' = {m € w : m(bV f) = 1}, i.e. Fpyp(w) is
the set of all models from w which satisfy bV f (obviously, if there is no such
model, then Fyy¢(w) =w, ). O

Our characterization of insertions in terms of dynamic Kripke structures is
based on some well known relations between sets of models and sets of formulae.
The relations provide — in a sense — also a connection between insertions into
some theories and corresponding models. They are expressed by the following
facts:

Fact 1 Let T be an AELKB-theory and w = Mod(T). Let w be a set of models
and w D w .
Then w = Mod(T UT ), where T is a set of La-formulae.

Therefore, a function f defined on W such that f(w) C w is a promising candi-
date of an appropriate transformation of DKS.

Fact 2 Let T, T' be AELKB-theories such that T C T'. If w = Mod(T) and
w = Mod(T'), then there is a py-path from w to w .

We can now propose a DKS: a transition from a possible world to another
possible world should correspond to insertion of formulae into theories (and vice
versa).

Our next goal is to define an appropriate monoid (and corresponding trans-
formations). The basic intuitions: U, a set of insertions, we will represent by a set
of formulae. We propose U as a monoid: a concatenation of two insertions is an
insertion, the concatenation of insertions is associative, further, an insertion of
no proposition plays the role of the unit (of the monoid). To each monoid mem-
ber is assigned a mapping from possible worlds to possible worlds (see Example
3).

Let w be a set of interpretations and f,(w) = w' for some u. We need the
transformation defined in a unique way: if u = v, then should be f,(w) = f,(w)
for each w € W.

Definition 17 Let u be an La-formula and [ul= = {z € L4 : & = u}. We as-
sume a selection function o that assigns to each [u]= ezactly one representative.



Definition 18 (i-monoid) Let U = {u : J[u]= o([u]=z) = u} be a set of rep-
resentatives. We define a monoid (called i-monoid) U over U: For u,v € U be
uov =o([uAv]=z).

Clearly, the operation o is associative and the empty formula plays the role of
the monoid unit, uoe = u = eou for each u € U. By a convention we may
consider € as the representative of the class of all propositional tautologies.

Definition 19 (Dynamic AELKB-Structure) Dynamic AELKB-Structure
is a pair (U, K), where K = (W,{p1,p2},m) is an AELKB-structure and U is
an i-monoid.

An action of the monoid U on W is defined as follows: for u € U is fy(w) =
w' = Mod(Cns(Th(w) U {u})).

Of course, w’ is the (unique) value of f, (w):

Fact 3 Let T be an AELKB-theory and K = (W,{p1,p2},m) be an AELKB-
structure. Let w € W be the set of all models of T and T =T U {u}.
Then there is in W exactly one w such that w = Mod(Cna(T)).

Fact 4 Let a dynamic AELKB-structure be given. It holds:

- fE(w) =w

- fuov(w) = fu(fq(w)) ,

— if fuow(w) = w , then Th(w ) = Cna(Th(w) U {u Av}) = Cna(Th(w) U
{ut U {v})

We are ready to outline an insertion-based procedure for computing SAE.
Let an AELKB-theory T' and a corresponding dynamic AELKB-structure K are
given. Let wr € W be the set of all models of T'.

— select a hypothesis h from S\ Cna(T))

— compute fp(wr) =w

— if w is a fixpoint of &, then return the computed SAE (and search for
another SAE), else select a hypothesis &' from '\ Cna(T"), where S = {¢ :
my () =1} and T' = Cna(TU{h}),'" continue the (recursive) computation

Remark 2 A backtracking is assumed — it may be useful to revise the initial
selection. For example, a premature selection of formulae of the form =K ¢ leads
sometimes to a direct construction of an inconsistent SAE.

It remains to show that the computation of f; may be based on model
checking.

Let an AELKB-theory T' and a possible world wr = Mod(T) be given. We
can use (an adaptation of) model checking algorithm of [5]!? in order to compute
the value of fi(wr).

W If S\ Cna(T') = 0, then w' is a fixpoint of &.
12 Symbolic model checking may be used in real applications.



We search through all pi-paths (breadth-first search is necessary) until we
find a possible world w such that for each Z € w is Z(h) = 1.!* Therefore,
fr(wr) =w and Cna(Th(w)) = Cna(T U{h}).

8 Revisions

Finally, we give a characterization of revisions in terms of DKS.

The power of AELKB (more precisely, of AELB) is demonstrated also by
a belief revision framework presented in [1]. We try to use also DKS as a tool
of revisions specification and computation. We also compare the reached results
with the results of [1]. In what follows we assume only AELB-theories.

Example 4 ([1]) Let be T = {B-broken = runs}. The set of all models of T
isw = {{B_'ba r, b}; {B_'ba r, _'b}7 {_'B_'ba r, b}a {_'B_'ba Ty _|b}, {_'B_'ba -, b}a
{_'B_'b: -, _'b}}

Let u = {-runs}. It holds that f,(w) =w, where w = {{~B=b,-r,b},
{=B=b,—r,—b}} is the set of all models of T = T U {~runs}. The set of min-
imal models is wpin = {{~B-b,—r,—b}}. Hence, T'*, the only SAE of T' is
inconsistent: T' Emin —broken, B-broken € T*, T E —runs A runs.

We have seen that the semantics of minimal models has some undesirable conse-
quences in a context of incomplete information. In our example the inconsistency
was caused by the hypothesis B-broken. The hypothesis is a member of a SAE
(defined in the standard way). It seems that we need a modified — as compared
with SAE and minimal entailment — idea of reasonable hypotheses. Our proposal
consists in a reconstruction of the given dynamic AELKB-structure. The SAE
of the reconstructed structure satisfies our intuitive requirements.

Example 5 Consider a reason of inconsistency observed in the Example 4. The
minimal model {~B—b,—r,—b} is in a sense a pathological one. It contains the
pair (~B-b,—b) — let us call it a gang (according to [6]) — with a potential con-
flict between claiming —b and disbelieving —b. We repair the pathology using a
technique of [3]. The essence of the technique is a modification of the accessi-
bility relation po. The modification consists in a removal of the pair (w’,wmm)
from pa and an insertion of an improvement of the pair to ps . The goal of the
improvement is a minimization of undesirable consequences.

The basic idea of the improvement is to replace the gang by a more rational
choice. For example, the more rational choice may be wy.qr = {—~B—b,—r,b} (the
interpretation {B—b,—r, b} is not a model of TI).

Therefore, we may insert (w,,wmt) into pa. After the revision of ps — the
new pa is (pa2 '\ (w,,wmm)) U (wl,wmt) — holds T’ Emin b, therefore Bb € T'*
and T'™* B =r AT

'3 The relation p; allows to define a semantics of branching time. From this point of
view, the application of the algorithm consist in checking the formula EF h. The
formula means that there is some pi-path from wr to some w such that h holds at
w.



Definition 20 Let ¢ be a literal and T be an interpretation. T is called rational
iff each of the following rationality conditions is satisfied:

KpelI=o¢el

Boel=opel

“KpeI=>opgl

“Bpel=op¢gl

Definition 21 Let ¢ be an objective and v a subjective literal. A gang is a pair
of literals (¢, 1) such that it does not satisfy a rationality condztwn

A ratlonal modification of a gang (¢,v) is a pair of literals (¢, 1) or (¢,¢"),
where q5 is a complementary literal to ¢ and ¢ to 1.

If an interpretation T of an AELKB-theory T contains a gang, then a repair
of I is a set S of interpretations J such that some'* gangs of I are in J replaced
by their rational modifications and each J is a model of T.

Let an AELKB structure K = (W, {p1, pa},m) be given. Another AELKB-
structure K = (W, {p1, py}, m)15 is called a reconstruction of K, if there is at
least one pair (wi, wy) € pa \p2 and a posszble world w2 containing a repair of
an interpretation I € wy such that (wl,wg) € p2 \ p2.

A computation of a reconstruction (of an AELKB-structure): If the model
checking algorithm gives w, for some u and w, we can proceed as follows. Let
Wrqet contains a repair of an interpretation Z € wpin. Repeat: put ps := (p2 \
(W, Winin))U(w, wret) and compute SAE again (until a consistent SAE is gained).

A summary: We do not change the concept of SAE, but the underlying
semantic structure is changed. The modified AELKB-structure determines a
modification of (minimal) entailment. Therefore, the set of derivable hypotheses
of the form B¢ is changed. The reasoning specified by the semantics can be
called dynamic preferential entailment. (If some facts from the knowledge base
contradict derivable beliefs, then we modify the given semantic specification of
the entailment.)

We now compare our results concerning the revisions of AELB-theories with
the results of [1].

A concept of careful SAE is introduced in [1]: First we define Y < X as Z, if
Z is a maximal subset of X such that Y U Z is consistent. Otherwise Y < X is 0.

Definition 22 A careful static autoepistemic expansion of an AELB-theory T
is T* = Cna(T U (T* <{B¢: T* =pmin 0}).
A set R(T*) ={¢ : (T* =min &) N (Bod € T*)} is called a revision set.

The next theorem corresponds to the Fundamental Theorem of Belief Revision,
[1].

Theorem 7 Let K = (W, {p1,p2},m) be an AELKB-structure. Let T be a con-
sistent AELB-theory, wr = Mod(T).

"4 There is a freedom in improving the impact of a gang. Our goal is not to use only
rational interpretations (in order to avoid some non-intuitive consequences).

'

15 The only difference between K and K’ is in accessibility relation: p2 # ps.



Then holds: if {¢ : My, (¢) = 1}, where my,, is computed according to K, is
an inconsistent SAFE of T, then there is an AELKB-structure K , a reconstruction
of K, such that the set {¢ : my, (@) = 1} is a careful SAE of T (for my,
computed according to IC,).

Conversely, if a careful SAE of T is given, we can compute it as a SAE specified
by a reconstruction of the corresponding AELKB-structure.

Theorem 8 Let T, K and wr be as in the Theorem 7. Let T* be a careful SAE
of T.

Then there is a K = (W, {pl,p;},m), a reconstruction of K, such that T* =
{¢ : My (@) = 1}, where m,,, is computed according to K .

Proof Sketch: Let T be an AELKB-theory, and (wT,w,) € po. Select a literal
¢ € R(T*) and make a repair S of a model Z from w’ such that m.,,,, (¢) # 1,
where wpqr = (w' \ {Z}) U S. Reconstruct the underlying AELKB-structure.
Repeat until T* = {¢ : my, (¢) = 1}. O

Finally, a remark concerning a comparison of the presented approach to
the other results of [1]: both the belief revision by theory change and the be-
lief completion of [1] may be simulated by modifying wp-component of pairs
(wT, Wimin) € p2 (by transforming wr to f(wr), to the set of all models of the
changed theory).

9 Conclusions

Summary of the results: We have introduced AELKB-structures and provided a
characterization of static autoepistemic expansions of AELKB-theories in terms
of AELKB-structures was given. A method of computing SAE of AELKB-
theories was outlined. Further, a DKS-characterization of insertions into AELKB-
theories (together with a corresponding computation using model checking) was
presented. Finally, a characterization of revisions of AELKB-theories (and a
computation using an enhanced model checking) was described.

The approach of the Section 8 motivates a generalization of the DKS. DKS
may be extended by a set of mappings from accessibility relations to accessibility
relations. Moreover, other transformations may be added — transformations ex-
tending the sets of possible worlds or transformations extending the vocabularies
associated to possible worlds.

Some of the other goals of the future research — a detailed study of dy-
namic preferential entailment (modifications of minimal entailment in the pres-
ence of incomplete knowledge), computation of static autoepistemic expansions
of AELKB theories, a characterization of deletions (from full AELKB-theories)
in terms of DKS, default reasoning in DKS, a semantic characterization of rea-
soning about action in terms of DKS.
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