Preferred answer sets supported by arguments

Jan Sefranek
Comeniu University, Bratislava, Slovakia
e-mail: sefranek @ii.fmph.uniba.sk

Abstract

We are aiming at a semantics of prioritized logic programs
which always selects a preferred answer set, if there is a non-
empty set of (standard) answer sets of the given program.

It is shown in a seminal paper by Brewka and Eiter that the
goal mentioned above is incompatible with their second prin-
ciple and it is not satisfied in their semantics of prioritized
logic programs. Similarly, also according to other established
semantics, based on a prescriptive approach, there are prior-
itized logic programs with standard answer sets, but without
preferred answer sets.

Our solution is as follows. According to the standard pre-
scriptive approach no rule can be fired before a more pre-
ferred rule, unless the more preferred rule is blocked. This
is a rather imperative approach, in its spirit. In our approach,
rules can be blocked by more preferred rules, but the rules
which are not blocked are handled in a more declarative style,
their execution does not depend on the given preference rela-
tion on the rules.

An argumentation framework is proposed in this paper. Ar-
gumentation structures are derived from the rules of a given
program. An attack relation on argumentation structures is
defined, which is derived from attacks of more preferred rules
against the less preferred rules. Preferred answer sets corre-
spond to complete argumentation structures, which are not
attacked by another complete argumentation structures.

Keywords: extended logic program, answer set, prefer-
ence, prioritized logic program, preferred answer set, argu-
mentation structure

Introduction

Background Meaning of a nonmonotonic theory is often
characterized by a set of (alternative) belief sets. It is natural
and appropriate to select sometimes some of the belief sets
as more preferred.

We are focused in this paper on extended logic programs
with a preference relation on rules (and with a kind of an-
swer set semantics), see f.ex. (Brewka and Eiter 1999; Del-
grande, Schaub, and Tompits 2003; Schaub and Wang 2001;
Wang, Zhou, and Lin 2000). Such kind of programs is de-
noted by the term prioritized logic programs in this paper.

An investigation of basic principles which should be satis-
fied by any system which is based on prioritized defeasible
rules is of fundamental importance. This type of research

has been initialized in the seminal paper (Brewka and Eiter
1999). Two basic principles are accepted in the paper.

Problem It is natural to require that some preferred an-
swer sets can be selected from a non-empty set of standard
answer sets of a (prioritized) logic program.

Unfortunately, there are prioritized logic programs with
standard answer sets, but without preferred answer sets ac-
cording to the semantics of (Brewka and Eiter 1999) (and
also of (Delgrande, Schaub, and Tompits 2003) or (Wang,
Zhou, and Lin 2000)). This feature is a consequence of the
prescriptive (Delgrande et al. 2004) approach to preference
handling. According to that approach, the preference rela-
tion defined on the rules of the given prioritized logic pro-
gram specifies the order in which rules are to be applied.

Moreover, the second of the principles accepted by
(Brewka and Eiter 1999) is violated, if a function is assumed,
which selects a non-empty subset of preferred answer sets
from a non-empty set of all standard answer sets of a pri-
oritized logic program. See Proposition 6.1 of (Brewka and
Eiter 1999).

Goal and proposed solution We believe that the possibil-
ity to select always a preferred answer set from a non-empty
set of standard answer sets is of critical importance. This
goal requires to accept a descriptive approach to preference
handling. The approach is characterized by (Delgrande and
Schaub 2000; Delgrande et al. 2004) as follows: The order
in which rules are applied, reflects their “desirability’. We
attempt to precise in conclusions the sense in which the term
is used in this paper.
Our goal is:

1. to modify the understanding of Principles proposed by
(Brewka and Eiter 1999) in such a way that they do not
contradict a selection of a non-empty set of preferred an-
swer sets from the underlying non-empty set of standard
answer sets,

2. to introduce such a notion of preferred answer sets which
enables a selection of a preferred answer set from a non-
empty set of standard answer sets.

The proposed solution is sketched as follows. A notion
of argument and argumentation structure is introduced. The

notions are inspired by (Garcia and Simari 2004), but they
are rather different. The basic argumentation structures cor-
respond to the rules. Some derivation rules are defined for
argumentation structures. The set of argumentation struc-
tures is closed w.r.t. the rules. A transfer from a preference
on rules to a preference on arguments is suggested. Attacks
of more preferred rules against the less preferred rules are
transferred via another set of derivation rules to the attacks
of more preferred arguments against the less preferred argu-
ments. Arguments attacked by more preferred arguments are
called blocked. Preferred answer sets are defined in terms of
complete and non-blocked arguments.

According to the prescriptive attitude towards prioritized
logic programs no rule can be fired before a more preferred
rule, unless the more preferred rule is blocked. This is a
rather imperative approach, in its spirit. In our approach,
rules can be blocked by more preferred rules, but the rules
which are not blocked are handled in a more declarative
style. The execution of non-blocked rules does not depend
on their order. Dependencies of more preferred rules on
less preferred rules does not prevent the execution of non-
blocked rules in our approach. Of course, this approach is
computationally more demanding than the prescriptive ap-
proach. In (Delgrande, Schaub, and Tompits 2003) a compi-
lation of prioritized programs to extended programs is pro-
posed. The standard answer sets of the “output” program are
equivalent - modulo new symbols - to the preferred answer
sets of the original prioritized program. We are not aware
of a similar result for an approach based on the descriptive
attitude.

Finally a remark — this paper is a result of a (rather unsuc-
cessful) attempt to modify approaches of (Brewka and Eiter
1999), (Delgrande, Schaub, and Tompits 2003) and (Wang,
Zhou, and Lin 2000) in a way, which enables a selection
of a preferred answer set from a non-empty set of standard
answer sets.

Main contributions Contributions of this paper are sum-
marized as follows. A modified set of principles for pre-
ferred answer sets specification is proposed. A new argu-
mentation framework is constructed, which enables a selec-
tion of preferred answer sets. Rules for derivation of ar-
gumentation structures and rules for derivation of attacks
of some argumentation structures against other argumenta-
tion structures are defined. Preferred answer sets are defined
in terms of complete and non-blocked argumentation struc-
tures. It is proven that our notion of preferred answer sets
satisfies specified principles, see Theorems 37,38,39. Fi-
nally, we emphasize that each program with a non-empty
set of answer sets has a preferred answer set.

Preliminaries

The language of extended logic programs is used in this pa-
per.

Let At be a set of atoms. The set of objective literals
is defined as Obj = AtU{—~ A : A € At}. If Lis an
objective literal then the expression of the form not L is
called default literal. Notation: Def = {not L | L € Obj}.

Sets of default literals are called assumptions in this paper.
The set of literals Lit is defined as ObjUDe f. A convention:
not not L = L, -—A = A, where L € Obj and A € At. If
X is a set of objective literals, then not X = {not L | L €
X}

A rule is each expression of the form L < Lq,..., Lg,
where K > 0, L € Obj and L; € Lit. If r is a rule
of the form as above, then L is denoted by head(r) and
{L1,...,Ly} by body(r). A finite set of rules is called ex-
tended logic program (program hereafter).

The set of conflicting literals is defined as CON =
{(L1,L2) | L1 = not Ly vV L1 = =La}. A set of literals
S is consistent if (S x S)N CON = 0. An interpretation is
a consistent set of literals. A total interpretation is an inter-
pretation I such that for each objective literal L either L €
or not L € I. A literal L is satisfied in an interpretation
iff L € I. A set of literals S is satisfiedin I iff S C I. A
rule r is satisfied in [iff head(r) is satisfied in I whenever
body(r) is satisfied in 1.

If S is a set of literals, then we denote S N Obj by ST and
S N Def by S~. Symbols body™ (r) and body ™~ (r) are used
here in that sense (notice that the usual meaning of body ™ ()
is different). If X C Def then pos(X) = {L € Obj |
not L € X }. Hence, not pos(body™ (r)) = body™ (r). If r
is a rule, then the rule head(r) < body™ (r) , is denoted by
rt.

Answer set of a program can be defined as follows (only
consistent answer sets are defined).

Definition 1 A total interpretation S is an answer set of a
program P iff ST is the least model' of the program Pt =

{r+ | S | body™(r)}. D

Note that an answer set S is usually represented by S (this
convention is sometimes used also in this paper).

The set of all answer sets of a program P is denoted by
SM(P). A program is called coherent iff it has an answer
set.

Strict partial order is a binary relation, which is irreflex-
ive, transitive and, consequently, assymetric.

Definition 2 (Prioritized logic program) A prioritized
logic program (P, <,/N) is a program P together with a
strict partial order < on rules of P and with a function N’
assigning names to rules of P.

If r1 < ry it is said that ro is more preferred than 1. O

A remark - if a symbol r is used in this paper in order to
denote a rule, then 7 is considered as the name of that rule
(no different name A/ (r) is introduced).

Definition 3 Let a program P and an answer set .S be given.
Letbe R = {r € P | body(r) C S}. It is said that R is the
set of all generating rules of ST. O

'P* is treated as definite logic program, i.e. each objective
literal of the form —A, where A € At, is considered as a new
atom.

Principles

Principles suggested by (Brewka and Eiter 1999) are dis-
cussed in this section. The principles relate an order on
rules with a corresponding order on answer sets. In other
words: they (partially) specify what means that an order on
answer sets corresponds to the given order on rules. The first
two principles are from (Brewka and Eiter 1999). Postulate
III reproduces an idea of Proposition 6.1 from (Brewka and
Eiter 1999).

The Principles of (Brewka and Eiter 1999) are expressed
in an abstract way for the general case of nonmonotonic
knowledge bases (prioritized defeasible rules). We restrict
the discussion (and the wording) of the Principles to the case
of logic programs and answer sets.

Principle I Let a prioritized logic program (P, <, ') be
given. Let A; and As be two answer sets of the program P.
Let R C P be a set of rules and dy,ds ¢ R are rules. Let
AT, AT be generated by the rules R U {d;} and R U {d»},
respectively. If d; is preferred over ds, then As is not a
preferred answer set of (P, <,). O

Principle IT Let A be a preferred answer set of a prior-
itized logic program (P, <,). and r be a rule such that
bodyt(r) ¢ A*. Then A is a preferred answer set of
(P U{r}),<',N’), whenever <" agrees with < on rules
in P and N extends N\ with the name r. O

Principle IIT Let a prioritized logic program (P, <,)
be given and B # () be the set of all answer sets of P. Then
there is a selection function ¥ s.t. X(B) is the set of all
preferred answer sets of (P, <, '), where) # X(B) C B.
O

It is shown in (Brewka and Eiter 1999), Proposition 6.1,
that Principle II is incompatible with Principle III, if the no-
tion of preferred answer set from (Brewka and Eiter 1999)
is accepted:

Example 4 ((Brewka and Eiter 1999)) Consider program
P, whose single standard answer set is S = {b} and the
rule (1) is preferred over the rule (2).

c <« mnotb €))]
b «— nota 2)

S is not a preferred answer set in the framework of (Brewka
and Eiter 1999)2; there is no BE-preferred answer set of
this (P, <, /) and there are also many other cases of prior-
itized programs with standard answer sets, but without BE-
preferred, D-preferred or W-preferred answer sets.

Assume that .S, the only standard answer set of P, is se-
lected — according to the Principle III — as the preferred an-
swer set of (P, <,). Let P be PU{a < c} and a « ¢

2We will use notation from (Delgrande, Schaub, and Tompits
2003). BE-preferred means preferred according to (Brewka and
Eiter 1999), D-preferred according to (Delgrande, Schaub, and
Tompits 2003) and W-preferred according to (Wang, Zhou, and
Lin 2000). Definitions of BE-, D- and W- preferred answer sets
are missing in this paper because of the limited space. We hope
that the main line of thoughts of this paper does not suffer from
that. A precise formal comparison of approaches mentioned above
can be found in (Schaub and Wang 2001).

be preferred over the both rules 1 and 2. P’ has two stan-
dard answer sets, S and 7' = {a, c}. Note that {c} € ST.
Hence, S should be the preferred answer set of P’ according
to the Principle II. However, in the framework of (Brewka
and Eiter 1999) the only preferred answer set of (P’, <, A7)
is T'. This selection of preferred answer set satisfies clear in-
tuitions — 7" is generated by the two most preferred rules.
O

Principle III is of crucial value according to our view. If
we accept a program as a representation of a domain, then
we consider its answer sets as (alternative) condensed rep-
resentations of the domain. If a preference relation is in-
troduced, some most preferred condensed representations
should be considered. The preference relation on rules and
its impact on a preference relation on answer sets should
not be totally destructive — at least one of the original con-
densed representations should be preferred. Therefore, we
are aiming at a less restrictive correspondence between or-
der on rules and order on answer sets.

In any case, there are good reasons to modify (or reject)
Principle II. Let a program P with a set of answer sets 3
be given. If P is extended to P’, we can sometimes get an
extended set of answer sets B’ D B (in contrast to standard
logical theories and their models). Hence, we select pre-
ferred answer sets of P’ from a broader variety of possibil-
ities. Consequently, no condition satisfied by some B € B
should constraint the selection of preferred answer set from
B’ (even from B’ \ B). Principle II is not accepted in this
paper. Principle II is not accepted also in (Sakama and In-
oue 2000). According to (Delgrande et al. 2004) descriptive
approaches do not satisfy this principle in general.

We propose a new principle below. The principle express
our position: the use of a preference relation should be fo-
cused on the blocking of less preferred rules and not on their
application. Moreover, the principle is useful in preventing
a problem with Rintanen’s approach, see Example 3.2 from
(Brewka and Eiter 1999). We translate the default theory
from the example into a logic program.

Example 5 Let P be

r1 b <« a,not b
) —a <« nota
3 a <« not-a

If ¢ < j, then r; is more preferred than 7; (in all examples
of this paper). There are two standard answer sets of P:
Sy = {—a},S2 = {a,b}. S corresponds to the preferred
extension of the corresponding default theory according to
Rintanen. This is rejected in (Brewka and Eiter 1999) be-
cause of Principle II.

We see another possibility how to prevent the selection of
Ss. See Principle IV below (one of the generating rules of
S is blocked by a more preferred rule). O

Let P be a program and 71,7, € P. It is said, that ry
blocks 14 iff not head(r1) € body™ (r2).
Principle IV.

Let A1, A5 be answer sets of a prioritized program (P, <
,N), o < 71 and 1 blocks 7.

Let a set of generating rules of A; contains r; and let 7o
be a member of each set of generating rules of A,.

Then As is not a preferred answer set. O

As regards a choice of principles, we accept the position
of (Brewka and Eiter 1999): even if somebody does not ac-
cept a set of principles for preferential reasoning, those (and
similar) principles are still of interest as they may be used
for classifying different patterns of reasoning.

In order to conclude this section: we accept Principles I,
I and IV.

From programs to arguments

We intend to apply the preference relation on rules only in
order to block the less preferred rules whenever assumptions
(the sets of default literals) in their bodies are contradicted
by consequences of more preferred rules. Therefore, our
attention is focused on assumptions, consequences of as-
sumptions, negative programs and negative equivalents of
programs.

We propose to consider assumptions as arguments and to
do a transition from the preference on rules to a preference
on arguments. In this section are recapped some notions
useful for that goal (from (Dimopoulos and Torres 1996) and
(Sefranek 2006)).

Definition 6 (< p) An objective literal L depends on an as-
sumption (on a set of default literals) W with respect to
a program P (L <p W) iff there is a sequence of rules
(ri,...,7k), k > 1,7; € P such that
e head(ry) =L,
o W = body(r1),
e foreachi, 1 <i < k, WU {head(r1),...,head(r;)} =
body(ri+1).
The set {L € Lit | L <p Xs} U Xs is denoted by
Cngp(Xs).

The assumption Xs is self-consistent w.r.t. a program P
iff Cn, (Xs) is consistent. O

If Z C Obj, we will use sometimes the notation
Cn« ., (Xs), assuming that the program P is extended by
the set of facts Z.

Dependencies on assumptions are expressed in (Di-
mopoulos and Torres 1996) in terms of support. Some im-
portant results on negative programs, used in our argumen-
tation framework, are based on the notion of support.

Definition 7 An assumption Xs is a support for an objective
literal L (for a set S of objective literals) in a program P iff
L e Ong,p(Xs) (S C Ong,(Xs)).

Let Xs be a support for L (for S) in P. Then Xs is a
minimal support for L (for S) in P iff forno Y C Xs holds
Le Cn<<P (Y) (S C Cn<<P (Y)) O

Definition 8 Let P be a program and Xs be a self-consistent
assumption.

An interpretation [is a supported interpretation of Xs iff
I = Cn<<P (XS)

An interpretation is supported iff it is the supported inter-
pretation of some self-consistent assumption Xs. O

Answer sets can be equivalently characterized in terms of
supported interpretations and in terms of dependencies.

Proposition 9 An interpretation S is an answer set of a pro-
gram P iff Sis total and S = Cn . (S7).

A supported interpretation I is an answer set of P iff it is
total. O

Definition 10 Two logic programs, P, and P», are support-
equivalent iff for every assumption Xs and for every objec-
tive literal L holds L € Cn«, (Xs) iff L € Cn,, (Xs).
O

Definition 11 If for each rule » € P holds that body(r) =
body™ (r), then P is a negative logic program. A nega-
tive program is reduced iff r1 = ro whenever body(ry) C
body(rs). O

Our notion of preferred answer set is based on argumenta-
tion structures which correspond to negative equivalents of
programs. The following two propositions provide a theo-
retical background for that use of argumentation structures.

Definition 12 The negative equivalent of a given logic pro-
gram P is the negative logic program R containing exactly
every rule r, where body(r) is a minimal support (in P) of
some objective literal L and L = head(r). O

Proposition 13 Let P be a program. Then its negative
equivalent R is reduced and support-equivalent to P and,

consequently, SM (P) = SM (R).

It is intended to apply the preference relation on rules for
blocking the less preferred rules with assumptions contra-
dicted by the consequence of a more preferred rule. There-
fore, a way how to transfer the preference relation to the
negative equivalent of the given program could be interest-
ing. However, a reasonable and straightforward transfer is
impossible — the rules of the negative equivalent do not cor-
respond to the original rules in a unique way. An attempt to
construct the transfer by means of argumentation structures
is presented in the following sections.

Argumentation structures

A descriptive approach to preferred answer sets specifica-
tion is presented in this paper. Remind that according to
(Delgrande and Schaub 2000) a descriptive approach can be
characterized by such order of applied rules which reflects
the “desirability” of rules application.

We attempt to specify “desirability” in terms of argu-
ments. Briefly, a preferred answer set is supported by a com-
plete argument, which is not blocked by a more preferred
argument. An order of rules can be reconstructed from the
argument.

Our aim is to transfer a preference relation defined on
rules to a notion of preferred answer sets via a notion of
argument (the method is inspired by (Garcia and Simari
2004)). While there defeasible rules are treated as (defea-
sible) arguments, here (defeasible) assumptions, sets of de-
fault negations, are considered as arguments. Reasoning
about a logic program is here understood as a kind of argu-
mentation, rules of the program are considered as unques-
tionable truths and sets of default literals can be viewed as
defeasible arguments, which may be contradicted by conse-
quences of some applicable rules.

The preference relation on rules is used in order to ig-
nore the attacks of less preferred arguments against more
preferred arguments. The core problem is to transfer the
preference relation defined on rules to arguments.

Let us begin by an example illustrating how could a notion
of argument be used in the context of logic programs.

Example 14 ((Brewka and Eiter 1999))

71 b «— a,not—b

T -b «— notb

Consider the rule r,. The literal —b is supported by the ar-
gument not b. If the argument is true (can be consistently
evaluated as true with respect to a program containing 2)
then also —b can be evaluated as true. As regards the rule ry,
default negation not —b can be treated as an argument for
b, if a is true. We are going to introduce a notion of argu-
mentation structure, which encodes also such “conditional
arguments”.

Of course, some arguments can be treated as counterar-
guments against other arguments. If rules r; and ry belong
to a program P and we accept the argument not b (with the
consequence —b), it can be treated as a counterargument to
not —b and vice versa. O

Definition 15 (Argument) Let P be a program.

A self-consistent set of default negations X is called an
argument w.r.t. the program P for a consistent set of objec-
tive literals Y, given a set of objective literals Z iff

1. pos(X)NZ =10,
2. Y g Cn<<PuZ(X)'

We will use the notation (Y «— X; Z) and the triple denoted
by it is called an argumentation structure (w.r.t. P). O

A remark: we do not require a minimality of arguments
(this is not an appropriate feature for answer sets specifica-
tion).

If Z = (also a shortened notation (Y <« X) can be
used. We will omit sometimes the phrase "w.r.t. P” and
speak simply about arguments (the corresponding program
is always clear from the context).

We emphasize that only self-consistent arguments for
consistent sets of objective literals are considered in this pa-

per.

Derivation of argumentation structures

Some argumentation structures can be derived from another
argumentation structures. The derivation is grounded on
the basic argumentation structures, which correspond to the
rules of the given program.

Ifr € Pisarule, then (head(r) < body ™ (r); body™ (r))
is a basic argumentation structure (w.r.t. P).

Only the argumentation structures derived from the basic
argumentation structures using derivation rules from Defini-
tion 17 are of interest in the rest of this paper. Whenever
we use the term “argumentation structure” below, we mean
“argumentation structure derived from basic argumentation
structures using derivation rules”.

Example 16 Consider a program P — the rule r3 is added
to rules 7o and r1 from Example 14 (P is used as a running
example in next paragraphs).

T3 a <« not-a

The following (basic) argumentation structures correspond
to rules of P: ({b} — {not -b};{a}),({-b} <«
{not b}),{{a} <« {not -a}) (let denote them by
Ay, As, Az, respectively).

As examples of two kinds of derived argumentation struc-
tures can serve: The argumentation structure Ay, = ({b} <
{not —b, not —a}) can be derived (by “unfolding”) from
A and Az and A5 = ({b,a} < {not —b, not —a}) from
Ajs and Ay (by joining arguments and sets of literals sup-
ported by the arguments).

Unfolding is used in order to obtain sets of argumenta-
tion structures, which are equivalents of negative programs.
Joining is applied to those equivalents of negative programs
in order to compose argumentation structures corresponding
to answer sets. O

Derivation rules R1 and R2 are motivated in Example 16.
The role of R3 is an extension of minimal arguments (as-
sumptions). This feature is necessary for a generation of
argumentation structures corresponding to answer sets.

Definition 17 (Derivation rules) Let P be a program.

R1 Letbe ry,72 € P, Ay = ({head(r1)} < X1;Z1) and
Az = ({head(ry)} < body ™ (ry); body™ (ro)) argumen-
tation structures, head(rs) € Z; and X7 U body™ (r2) U
Z1 U body ™ (ry) U {head(r1)} be consistent.

Then also A3 = (head(r1) «— X1 U body™ (r2); (Z1 \
{head(r3)}) U body™ (ro)) is an argumentation structure.

R2 Let A; = (Y7 « X;) and Ay = (Y2 <« X>) be argu-
mentation structures and X7 U X5 UY; UY5 be consistent.
Then also A3 = (Y7 U Y2 <« X7 U X5) is an argumenta-
tion structure.

R3 Let A; = (Y7 <« X;) be an argumentation structure
and W be an assumption.

If X; UW UY; is consistent, then also Ay = (Y] <«
X1 UW) is an argumentation structure.

A derivation of A (w.rt. P) is a sequence
(Aq, As, ..., Ag) of argumentation structures (w.r.t. P)
such that A; is a basic argumentation structure, A = Ay
and each A;, 1 < i < k, is either a basic argumentation
structure or it is obtained by R1 or R2 or R3 from preceding
argumentation structures.

Argumentation structures of the form (X < Y'; () are of
the fundamental importance - they correspond to the nega-
tive rules. It is known from (Dimopoulos and Torres 1996)
that each answer set of a program P can be represented as
an answer set of the support equivalent negative reduced pro-
gram, see Proposition 13. We are aiming at an identification
of argumentation structures that generate answer sets and are
not blocked in the sense defined below.

The following proposition shows that the rule R1 enables
to derive argumentation structures, which are equivalents of
the support equivalent negative reduced program.

Proposition 18 Let P be a program, let be L € Obj and
W C Def. If L € Cne (W) and W is a minimal support
for L, then either ({L} «— W) is a basic argumentation
structure or there is a derivation of ({L} — W) and only
the rule R1 is used in the derivation.

Proof Sketch: Suppose that ({L} < W) is not a basic
argumentation structure.

Consider a sequence of rules (rq,...,rx), where k > 1
and a rule r;,2 > 1. The argumentation structure cor-
responding to 7; is (head(r;) < body™ (r;); body™ (r;)).
It holds that body~(r;) C W and body*(r;) C
{head(r1),...,head(r;_1)} = Z'~1. Hence, after at most
i— 1 applications of R1 we obtain (head(r;) <= W). Notice
that L = head(ry) O

Therefore, to each rule from the negative equivalent of
the given program P exists a corresponding argumentation
structure (w.r.t. P).

On the other hand, a similar correspondence is from de-
rived argumentation structures to the rules of the negative
equivalent of P.

Proposition 19 [f there is a derivation of an argumentation
structure A = ({L} «— Xs) (w.rt. P) using only RI,
then Xs is a minimal support of L and there is r € R s.t.
head(r) = L and body(r) = body™ (r) = Xs.

Proof Sketch: L € Cn,(Xs), i.e. L is supported by Xs.
If only R1 is used, then the support is minimal.

Consequence 20 Let R be the negative equivalent of P. For
eachr € R there is a derivation (w.r.t. P) ofthe correspond-
ing argumentation structure ({head(r)} < body(r)).

Argumentation structures of the form (Y «— X; 7)), Z #
() may be derived only using R1 and they support only sin-
gletons, heads of some rules. Sets of literals, supported by
an argument are constructed only from argumentation struc-
tures of the form ({L} «— X).

Consequence 21 [f there is a derivation of an argumenta-
tion structure (Y «— X; Z), Z #), then Y = {L} for some
Le Obj and L GQ CTL<<PUZ(X).

Prof Sketch: The rules R2, R3 can be applied only if Z =
(. If only R1 is used in a derivation of an argumentation
structure Ay = (Y7 <« X3; Z1), then Y] is a singleton.

Proposition 22 [f there is a derivation of an argumentation
structure (Y «— X), thenY C Cn,(X).

Proposition 23 If S is an answer set of a program P, then
there is an argumentation structure (S < S~) derivable
from the basic argumentation structures.

Proof Sketch: S = Cn«,.(S™) (see Proposition 9). Ac-
cording to Proposition 18 for each L € ST there is a deriva-
tion of ({L} <« W), where W C S—. The argumentation
structure (ST < S7) is obtained using R2 and R3.

Attacks

Our approach to preferred answer sets is based on a so-
Iution of conflicts between argumentation structures. We
distinguish three steps towards that goal. Contradictions
between argumentation structures represent the elementary
step. Only some contradictions are called attacks. The basic
attacks are defined only for the basic argumentation struc-
tures. Consider two basic argumentation structures .4; and
As. If A; contradicts A5 and corresponds to a more pre-
ferred rule, then it attacks As. Attacks are propagated to
other argumentation structures via some derivation rules. Fi-
nally, in the case of attacks between complete argumentation
structures (corresponding to answer sets) we speak about
blocking.

Definition 24 Consider argumentation structures A =
<Y1 — Xl; Z1> and B = <Yv2 — X2;Z2>.

If there is a literal L € Y7 such that not L € X, itis
said that the argument X contradicts the argument X5 and
the argumentation structure A contradicts the argumentation
structure 5.

It is said that X is a counterargument to Xs. O

Two trivial observations (important for a generation of
preferred answer sets):

The basic argumentation structures corresponding to the
facts of the given program are not contradicted.

Let r; = a < be a fact, let ro be more preferred than r;
and not a € body~ (r2). Then any assumption that contains
body~ (r2) is not self-consistent and, therefore, it is not an
argument.

Example 25 In Example 16 4; contradicts A, and A5 con-
tradicts A;. O

Example 25 shows that only some counterarguments are
interesting: the rule r; is more preferred than the rule ro,
therefore the counterargument of A, against .4; should not
be “effectual”. We are going to introduce a notion of attack
in order to denote “effectual” counterarguments.

Similarly as for the case of argumentation structures, the
basic attacks are defined first. A terminological convention:
if A; attacks As, it is said that the pair (A1, A2) is an attack.

Definition 26 Let be 2 < 1 and A; = ({head(r1)} <
body~ (r1); body™ (r1)) contradicts Ay = ({head(ry)} <
body ~ (rs); body ™ (r2)).

Then A; attacks As and it is said, that this attack is basic.

Attacks of argumentation structures “inherited” (prop-
agated) from basic attacks are defined in terms of some
derivation rules. The rules of that inheritance are motivated
and defined below.

Example 27 Let us continue with Example 16.

Consider the basic argumentation structures A; =
({b} — {not —b};i{a}), Ay = ({=b} «— {not b}),
As = ({a} < {not —a}) and the derived argumenta-
tion structures Ay = ({b} «— {not —b,not —a}), As =
({b,a} < {not —=b, not —a}).

(Aj, As) is the only basic attack.

A derivation of the attacks of (A4, A2) and (As, Asz)
could be motivated as follows. A4 is derived from 4; and
Ajs using R1, the attack of 4; against .45 should be propa-
gated to the attack (A4, A2). Note that A3 is a neutral argu-
mentation structure with respect to attacks.

Now, Aj is derived from A3 and A4. Again, the attack of
A, against As should be inherited by (Ay4, As).

To the contrary, As contradicts A4 and A5, but it is based
on a less preferred rule, hence those contradictions are not
considered as attacks. O

First we define two rules, which specifies inheritance of
attacks “via unfolding”. Second, if we have two attacks
and the attacking sides are joined and also the attacked sides
are joined (and some natural conditions are satisfied), then
the former argumentation structure attacks the later. Finally,
a class of similar cases: the “attacking side” is preserved,
when both attacking and attacked argumentation structures
are joined with a “neutral member”.

A question, whether those derivation rules for attacks are
sufficient and necessary arises in a natural way. Our only
response to the question in this paper is that Principles I, III
and IV are satisfied, when we use this notion of attack.

A technical remark: Attack derivation rules are designed
in order to derive attacks from another attacks; however, if
a new argumentation structure is used in the consequent of
arule, it is necessary to check, whether the argument of that
structure is self-consistent (and, consequently, whether it is
really an argumentation structure). Notice that G p, defined
below in Definition 29 contains all relevant argumentation
structures as vertices.

Derivation rules, which propagate attacks are defined be-
low. We introduce some conventions and shortcuts in order
to simplify the presentation. We represent more (very simi-
lar) rules by some schemes of rules.

1. u(A1, Az) denotes the result of “unfolding” of argumen-
tation structures A; and As (f.ex. the result of un-
folding of Ay = ({head(r1)} «— Xi1;Z1) by Ay =

{{head(rs)} < body™ (r2); body™ (r2)) is u(A1, Ay) =
({head(r1)} < X1 U body™ (r2); (Z1 \ {head(r2)}) U
body™ (r2))). It is assumed, that consequences of argu-
mentation structures, involved in unfolding are singletons,
heads of rules.

2. Ay U Ay means (Y1 UY,; — X7 U X)) for A; = (Y; «

X;),i = 1,2; in this context we consider also “zero”-
“argumentation structures” () < @), () < W) (only
as a notational convention for this definition). Observe
that (Y« () could be a regular argumentation structure.
An occurrence of a zero-argumentation-structure should
be clear in a given context.

For example - A; U Az may represent also (Y7 «— X; U
Xs) or (Y1 UYs < X;) and Ay U Aj attacks A3 U Ay
may represent also A, attacks (Y3 <« X35 U Xy).

Definition 28 (Attack derivation rules) Basic attacks are
attacks.

Q1 Let A, attacks Ay = ({head(r2)} «— Xa; Z2), Az =
({head(r3)} < Xs; Z3) be an argumentation structure,
which does not attack Ay, head(r3) € Zs.

If u(As, A3) is an argumentation structure®, then A; at-

tacks u(Asz, As).

Q2 Let Ay = ({head(r1)} <« X1;7Z1) attacks As. Let
As = ({head(r3)} < Xs;Z3) be not attacked and
head(rs) € Z;.

If w(A;, As) is an argumentation structure, then

u(Ay, Ag) attacks As.

Q3 Suppose that A; = (Y} « X;) attacks Ay = (Y «
Xs) and A3 = (Y3 <« Xj3) attacks Ay = (Y3 — Xy);
neither As, nor A4 attacks A;.

Then A; U Aj attacks A5 U Ay, if both are argumentation
structures.

Q4 Suppose that A; = (Y] <« X;) attacks Ay = (Y5 «
Xo). Let B;, i = 1,2 be (possibly zero-) argumentation
structures of the form (U; «— W), both does not attack
A; and Bs does not attack B1.

Then A; U B attacks Ay U Bs.

There are no other attacks except those specified above.

A derivation of an attack is a sequence A7, . . ., X, where
each AX; is an attack (a pair of attacking and attacked ar-
gumentation structures), X} is a basic attack and each X'i,
1 < i < k is either a basic attack or it is derived from the
previous attacks using rules Q1, Q2, Q3, Q4.

We define below in Definition 29 a graph with argumen-
tation structures as vertices and attacks as edges.

Definition 29 Let (P, <,) be a prioritized logic program.
We define an oriented graph Gp = (V, E), where vertices
V' are argumentation structures derived from the basic argu-
mentation structures and edges F are attacks derived from
the basic attacks. O

3The role of this condition — in all items of this definition — is
to ensure the consistency of arguments and their consequences.

Preferred answer sets

Definition 30 (Complete arguments, blocked arguments)
An argumentation structure (Y <« X)) is called complete iff
for each literal L € Obj itholds that L € Y or not L € X.

A complete argumentation structure A4; is blocked iff
there is a complete argumentation structure Ao, which at-
tacks A; and As itself is not attacked by a complete argu-
mentation structure. O

Example 31 Consider our running example. Remind all the
relevant information: P is

1 b «— a,not—b

T2 =b «— mnotb

T3 a <« mnot-a
A = ({b} < {not —b;{a}}), A2 = ({-b}
{not b}), A3 = ({{a} <« {not -a}), Ay =
({6}« {not =bnot =a}),As = ({ba} <

{not =b, not —a}), Ag = ({-b,a} — {not —a, not b}).
{(A1, Az), (Ag, A2), (A5, A2), (A4, Ag)(As, As)} € E.
No pair (U, As) such that I{ is derived from A3 is in E.

Hence: the complete argumentation structure Ag is
blocked, Ajs is complete and not blocked.

Observe that A5 contains an argument for {a,b}, an
answer set of P, similarly Ag contains an argument for
{a, —b}, which is another answer set of P.

We will prefer A5 over Ag (the later is blocked by the for-
mer). Consequently, we will consider {a, b} as a preferred
answer set of the given prioritized logic program. O

Definition 32 (Preferred answer set) An argumentation
structure is preferred iff it is complete and not blocked.

YUX is apreferred answer set iff (Y «— X) is a preferred
argumentation structure. O

The following example shows that the argumentation
structure corresponding to the only answer set of a program
is preferred, even if it is attacked (by an argumentation struc-
ture which is not complete).

Example 33
r1 b «— nota
T9 a <« notb
r3 c «— a
T4 c <« notc

Let the basic argumentation structures are denoted by A4;,
i=1,...,4. (A1, A2), (As, Ay) are the basic attacks. Ay
attacks As = ({c¢} < {not b}) according to the rule QI
and A; attacks Ag = ({c,a} «— {not b}) according to the
rule Q4. However, the complete argumentation structure Ag
is not attacked by another complete argumentation structure
(there is no such structure) and, consequently it is the pre-
ferred argumentation structure. O

Theorem 34 If S is a preferred answer set of (P, <,N),
then S is an answer set of P.

Proof Sketch: We assume that A = (St «— S7) is a pre-
ferred argumentation structure. Then .4 is complete. Obvi-
ously, S = Cng,.(S7). O

Example 35 ((Brewka and Eiter 1999)) Consider the pri-
oritized logic program, where r; are names of the rules (oc-
curring in the corresponding row) and the rule r; is more
preferred than the rule r; whenever i < j.

1 p <« notq

T q <+ mnot—q
T3 -p <« notp

T4 p <+ not-p

As = ({-p} <« {not p}) is attacked by A; = ({p} —
{not ¢}) and Ay = ({p} <« {not —p}) is attacked by
Az = ({=p} «— {not p}).

There are two complete argumentation structures in P:
As = ({g, ~p} — {not ~q,not p}) and As = ({¢,p} <
{not —p, not —q}).

Notice that only Ag is blocked. Aj attacks Ag and A
attacks As, but A; is not complete and there is no complete
argumentation structure which attacks As. O

Reconsider Example 4 of a prioritized program without
BE-preferred answer set.

Example 36 ((Brewka and Eiter 1999))

1 ¢ «— mnotb
To b «— nota

Remind that o < r;. There is no edge in Gp (there is no
basic attack, hence no attack can be inherited). The only
complete vertex is ({b} < {not a, not c}). Hence, {b} is a
preferred answer set of (P, <,).

If we add the most preferred rule rg = a < c to P, then
Ao = ({a} « 0;{c}) attacks Ay = (b < not a) and
it can be derived that the complete argumentation structure
Ay = ({a,c} — {not b}) attacks the complete argumen-
tation structure As = ({b} <« {not a, not c}). Moreover,
Ay is not attacked and not blocked. Hence, Ay is preferred.
Therefore. {a, c} is the preferred answer set. O

Principle III is satisfied:

Theorem 37 Let P = (P, <,N) be a prioritized logic pro-
gram and SM (P) # (.
Then there is a preferred answer set of P.

Proof Sketch: Assume that for each S € SM (P) holds
that the complete argumentation structure (ST «— S7) is
blocked. Consider S; € SM(P). If A; = (S < S) is
blocked, there is a complete argumentation structure 4; =
(S;-r — S’;) which attacks .A; and itself is not attacked. A
contradiction. O

Theorem 38 Principle 1 is satisfied

Proof Sketch: Let A; # As be answer sets of a program
P.Let R C Pbeasetofrulesand dy,ds ¢ R are rules. Let
AT, AT be generated by the rules R U {d;} and R U {d»},
respectively.

It holds that head(dl) € A; and head(dy) € Aa,
Ay~ body(ds) and As [~ body(dy) (otherwise A1 = Aj
or either A; or A, is not an answer set). Suppose that
dy < dy. Tt means, (head(d;) < body~ (dy); body™ (dy))
attacks (head(ds) < body ™~ (ds); body™ (ds))

If both body ™ (d;) and body ™ (dy) are empty sets, (A} «
A7) attacks (A « A according to Q4.

Otherwise, at least one argumentation structure from
31 = <head(d1) — W1> and BQ = <head(d2) — W2>
is obtained using the derivation rule R1 and B; attacks 5.
Hence, also (A} « A7) attacks (A «— AJ).

Therefore, As is not a preferred answer set. O

Theorem 39 Principle IV is satisfied.

Proof Sketch: Let S and S2 be answer sets of a program P.
Suppose that 1 is a member of a generating set of S; and
7o is in each set of generating rules of .S5. It is also assumed
that Ay = (head(rq) < body ™ (rs); body™ (r3)) is attacked
by Ay = ({head(r1)} < body™ (r1); body™ (r1)).

Therefore, (S5 «+ S5) is blocked by (S;” < S;) and
So is not a preferred answer set. O

Conclusions

Results An argumentation framework has been con-
structed, which enables to transfer attacks of rules to attacks
of argumentation structures and, consequently, to attacks of
answer sets. Preferred answer sets are not attacked by an-
other answer sets.

This construction enables a selection of a preferred an-
swer set whenever there is a non-empty set of standard an-
swer sets of a program.

We did not accept the second principle from (Brewka and
Eiter 1999), on the other hand a new principle, which re-
flects the role of blocking, has been proposed. According
to prescriptive approaches to prioritized logic programs, no
rule can be fired before a more preferred rule, unless the
more preferred rule is blocked. Programs with standard an-
swer sets and without preferred answer sets is a consequence
of that attitude. We stress the role of blocking — in our ap-
proach, rules can be blocked by more preferred rules, but
the rules which are not blocked are handled in a declarative
style.

Preferred answer set is not blocked by another answer set.
It means, that a desirable set of rules, in our approach, which
generates a preferred answer set, is such a set of rules, that
no rule of the set can be attacked by a rule from a set of
rules generating another answer set (unless that answer set
is blocked).

Open problems, future research Of course, a kind of
fine-tuning of our approach is intended.

Further, a more detailed comparison of our approach with
other approaches to prioritized logic programs is among our

plans. Also approaches not referenced in this paper are of in-
terest (f.ex. works by Zhang and his colleagues). A compar-
ison to defeasible logic programming of (Garcia and Simari
2004), to other defeasible logics and argumentation frame-
works is challenging for us, similarly as a comparison to
dynamic logic programming.

It is assumed that from the computational complexity
point of view our approach generate problems complete on
the second level of polynomial hierarchy. The technical re-
sult is among the plans for the future research.

References

Brewka, G., and Eiter, T. 1999. Preferred answer sets
for extended logic programs. Artificial Intelligence 109(1-
2):297-356.

Delgrande, J. P, and Schaub, T. 2000. Expressing prefer-
ences in default logic. Artificial Intelligence 123(1-2):41—
87.

Delgrande, J.; Schaub, T.; Tompits, H.; and Wang, K.
2004. A classification and survey of preference handling

approaches in nonmonotonic reasoning. Computational In-
telligence 20(2):308-334.

Delgrande, J.; Schaub, T.; and Tompits, H. 2003. A frame-
work for compiling preferences in logic programs. Theory
and Practice of Logic Programming 3(2):129-187.

Dimopoulos, Y., and Torres, A. 1996. Graph theoretical
structures in logic programs and default theories. Theor.
Comput. Sci. 170(1-2):209-244.

Garcia, A.J., and Simari, G. R. 2004. Defeasible logic pro-
gramming: An argumentative approach. TPLP 4(1-2):95-
138.

Sakama, C., and Inoue, K. 2000. Prioritized logic pro-
gramming and its application to commonsense reasoning.
Artificial Intelligence 123(1-2):185-222.

Schaub, T., and Wang, K. 2001. A comparative study of
logic programs with preference. In IJCAI, 597-602.
Sefranek, J. 2006. Rethinking semantics of dynamic logic
programs. In Proc. of the Workshop NMR.

Wang, K.; Zhou, L.; and Lin, F. 2000. Alternating fixpoint
theory for logic programs with priority. In Computational
Logic, 164-178.

